Parameter Estimation of Mixed Geographically Weighted Bivariate Zero-Inflated Negative Binomial Regression Model

Mawadah Putri Islamiati, Purhadi Purhadi, Wibawati Wibawati

Abstract


The Bivariate Zero-Inflated Negative Binomial (BZINBR) regression model is commonly used to analyze two correlated count response variables characterized by overdispersion and excess zeros. To account for spatial heterogeneity in predictor effects, the BZINBR model has been extended into the Geographically Weighted BZINBR (GWBZINBR) model. However, predictor effects are not always entirely local; certain global effects may persist across regions. This study proposes the Mixed Geographically Weighted BZINBR (MGWBZINBR) model, which integrates both global and local parameter structures for modeling spatially correlated bivariate count data. The theoretical framework of the MGWBZINBR model is developed, including the derivation of the log-likelihood function, parameter estimation procedures, and hypothesis testing. Parameter estimation is conducted using the Maximum Likelihood Estimation (MLE) method via the iterative Berndt–Hall–Hall–Hausman (BHHH) algorithm. Given the complexity of the likelihood equations and the absence of closed-form solutions, numerical optimization is employed to ensure convergence and stability. The MGWBZINBR model offers a flexible and robust framework for analyzing spatial count data with excess zeros and complex dependency structures. It can be applied in various fields, including public health, ecology, and transportation analysis, to understand the influence of both local and global predictors on spatial phenomena. As the focus of this paper is methodological, empirical and simulation-based applications are intentionally excluded.


Keywords


Bivariate Zero-Inflated Negative Binomial; Mixed Geographically Weighted Regression; Spatial Heterogeneity; Maximum Likelihood Estimation; BHHH Algorithm; Excess Zeros

Full Text:

PDF

References


J. M. Hilbe, Negative Binomial Regression. Cambridge, U.K.: Cambridge University Press, 2011. doi: 10.1017/CBO9780511973420.

P. C. Consul and F. Famoye, “Generalized Poisson regression model,” Communications in Statistics - Theory and Methods, vol. 21, no. 1, pp. 89–109, Jan. 1992. doi: 10.1080/03610929208830766.

D. Lambert, “Zero-inflated Poisson regression, with an application to defects in manufacturing,” Technometrics, vol. 34, no. 1, p. 1, Feb. 1992. doi: 10.2307/1269547.

J. F. Lawless, “Negative binomial and mixed Poisson regression,” Canadian Journal of Statistics, vol. 15, no. 3, pp. 209–225, Sep. 1987. doi: 10.2307/3314912.

M. Ridout, J. Hinde, and C. G. B. Demétrio, “A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives,” Biometrics, vol. 57, no. 1, pp. 219–223, Mar. 2001. doi: 10.1111/j.0006-341X.2001.00219.x.

M. I. A. Saputro and M. F. Qudratullah, “Estimation of zero-inflated negative binomial regression parameters using the maximum likelihood method (case study: factors affecting infant mortality in Wonogiri in 2015),” in Proceedings of the International Conference on Science and Engineering, vol. 4, pp. 240–254, 2021.

R. Azwarini, Hipotesis pada Model Regresi Bivariate Zero-Inflated Negative Binomial, Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, 2023.

H. J. Sari, Estimasi Parameter dan Pengujian Hipotesis pada Model Geographically Weighted Bivariate Zero-Inflated Negative Binomial Regression, Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, 2024.

C. Zeng et al., “Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method,” Geoderma, vol. 281, pp. 69–82, Nov. 2016. doi: 10.1016/j.geoderma.2016.06.033.

B. Lu, M. Charlton, P. Harris, and A. S. Fotheringham, “Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data,” International Journal of Geographical Information Science, vol. 28, no. 4, pp. 660–681, 2014. doi: 10.1080/13658816.2013.865739.

A. R. da Silva and M. D. R. de Sousa, “Geographically weighted zero-inflated negative binomial regression: A general case for count data,” Spatial Statistics, vol. 58, p. 100790, 2023. doi: 10.1016/j.spasta.2023.100790.

M. S. Nur, A. Choiruddin, et al., “Parameter estimation and hypothesis testing of geographically weighted bivariate zero-inflated Poisson inverse Gaussian regression models,” in IOP Conference Series: Materials Science and Engineering, vol. 1115, no. 1, p. 012043, Mar. 2021. doi: 10.1088/1757-899X/1115/1/012043.

R. Fitriani and I. G. N. M. Jaya, “Spatial modeling of confirmed COVID-19 pandemic in East Java Province by geographically weighted negative binomial regression,” Communications in Mathematical Biology and Neuroscience, vol. 2020, pp. 1–17, 2020. doi: 10.28919/cmbn/4874.

N. Ismail and H. Zamani, “Estimation of claim count data using negative binomial, generalized Poisson, zero-inflated negative binomial and zero-inflated generalized Poisson regression models,” Casualty Actuarial Society E-Forum, no. 1992, pp. 1–28, 2013.

A. S. Fotheringham, C. Brunsdon, and M. Charlton, Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Chichester, U.K.: Wiley, 2002.

J. M. Hilbe, Modeling Count Data. Cambridge, U.K.: Cambridge University Press, 2014. doi: 10.1017/CBO9781139236065.




DOI: https://doi.org/10.37905/jjom.v7i2.32711



Copyright (c) 2025 Mawadah Putri Islamiati, Purhadi Purhadi, Wibawati Wibawati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: [email protected].