Parameter Estimation and Hypothesis Testing of GTW Compound Correlated Bivariate Poisson Regression Model: A Theoretical Development

Priyanka Ratulangi Hargandi, Purhadi Purhadi, Achmad Choiruddin

Abstract


Each observation location and time possesses distinct characteristics, reflecting heterogeneity at every observation point, both spatially and temporally. This condition renders the Compound Correlated Bivariate Poisson Regression (CCBPR) model inadequate for representing data dynamics that exhibit spatial and temporal heterogeneity. To address this limitation, the Geographically and Temporally Weighted Compound Correlated Bivariate Poisson Regression (GTWCCBPR) model is employed, which allows parameter variation across locations and time periods. This model also incorporates the exposure variable as a weighting factor to adjust for differences in risk across observational units. This study aims to estimate the parameters of the GTWCCBPR model using the Maximum Likelihood Estimation (MLE) approach. Due to the complex structure of the model, the log-likelihood function does not yield a closed-form solution. Therefore, parameter estimation is performed using the iterative Berndt-Hall-Hall-Hausman (BHHH) algorithm. Subsequently, hypothesis testing is conducted to evaluate the parameter similarity between the global model (CCBPR) and the spatiotemporal model (GTWCCBPR), as well as to assess the significance of each predictor variable. Simultaneous testing is carried out using the Maximum Likelihood Ratio Test (MLRT), while partial testing is conducted using the Z-test. The scope of this study is limited to theoretical formulation and methodological development, without empirical or simulation-based validation. Future research may extend this work by applying the GTWCCBPR model to practical datasets exhibiting spatio-temporal heterogeneity, particularly in areas such as public health (e.g., maternal and postneonatal mortality), epidemiology, or regional planning.

Keywords


Spatio-temporal heterogeneity; Bivariate count data; Overdispersion; BHHH Algorithm; CCBPR; GTWCCBPR; MLRT

Full Text:

PDF

References


A. J. Dobson and A. G. Barnett, An Introduction to Generalized Linear Models, Fourth Edition. Chapman and Hall/CRC, 2018. doi: 10.1201/9781315182780.

J. M. Hilbe, “Modeling count data,” Model. Count Data, no. 3, pp. 1–294, 2014, doi: 10.1111/rssa.2_12138.

X. Xu and J. W. Hardin, “Regression Models for Bivariate Count Outcomes,” Stata J., vol. 16, no. 2, pp. 301–315, 2016, doi: 10.1177/1536867X1601600203.

J. Hinde, “Compound Poisson Regression Model,” GLIM 82, pp. 109–121, 1982.

G. Z. Stein and J. M. Juritz, “Bivariate compound poisson distributions,” Commun. Stat. - Theory Methods, vol. 16, no. 12, pp. 3591–3607, Jan. 1987, doi: 10.1080/03610928708829593.

G. Z. Stein, W. Zucchini, and J. M. Juritz, “Parameter Estimation for the Sichel Distribution and Its Multivariate Extension,” J. Am. Stat. Assoc., vol. 82, no. 399, p. 938, Sep. 1987, doi: 10.2307/2288808.

A. C. Cameron and P. K. Trivedi, Regression Analysis of Count Data. Cambridge University Press, 2013. doi: 10.1017/CBO9781139013567.

J. K. Ord and A. Getis, “Local Spatial Autocorrelation Statistics: Distributional Issues and an Application,” Geogr. Anal., vol. 27, no. 4, pp. 286–306, 1995, doi: 10.1111/j.1538-4632.1995.tb00912.x.

S. N. H. Salby, “Penaksiran Parameter Dan Pengujian Hipotesis Model Regresi Compound Correlated Bivariate Poisson (Studi Kasus : Jumlah Kematian Ibu Nifas dan Jumlah Kematian Neonatal di Provinsi Jawa Timur Tahun 2021),” Institut Teknologi Sepuluh Nopember Surabaya, 2023.

R. Safarida, “Model Regresi Geographically Weighted Compound Correlated Bivariate Poisson (Studi Kasus: Jumlah Kematian Ibu Nifas dan Jumlah Kematian Neonatal di Provinsi Jawa Timur Tahun 2021),” Institut Teknologi Sepuluh Nopember Surabaya, 2023.

A. S. Fotheringham, R. Crespo, and J. Yao, “Geographical and Temporal Weighted Regression (GTWR),” Geogr. Anal., vol. 47, no. 4, pp. 431–452, Oct. 2015, doi: 10.1111/gean.12071.

B. Huang, B. Wu, and M. Barry, “Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices,” Int. J. Geogr. Inf. Sci., vol. 24, no. 3, pp. 383–401, Mar. 2010, doi: 10.1080/13658810802672469.

S. Mardalena, “Penaksiran Parameter dan Pengujian Hipotesis pada Model Geographically Weighted Multivariate Poisson Inverse Gaussian Regression,” Institut Teknologi Sepuluh November Surabaya, 2022.

H. Yasin, P. Purhadi, and A. Choiruddin, “Estimasi Parameter Dan Pengujian Hipotesis Model Geographically Weighted Generalized Gamma Regression,” J. Gaussian, vol. 11, no. 1, pp. 140–152, 2022, doi: 10.14710/j.gauss.v11i1.33990.

J. Nugraha, Metode Maksimum Likelihood Dalam Model Pemilihan Diskrit. Yogyakarta: Universitas Islam Indonesia, 2017.

H. Yasin, Purhadi, and A. Choiruddin, “Spatial clustering based on geographically weighted multivariate generalized gamma regression,” MethodsX, vol. 13, p. 102903, Dec. 2024, doi: 10.1016/j.mex.2024.102903.




DOI: https://doi.org/10.37905/jjom.v7i2.32712



Copyright (c) 2025 Priyanka Ratulangi Hargandi, Purhadi Purhadi, Achmad Choiruddin

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: [email protected].