Effect of Prey Refuge and Harvesting on Dynamics of Eco-epidemiological Model with Holling Type III
Abstract
Keywords
Full Text:
PDF [English]References
P. H. Leslie and J. C. Gower, “The Properties of a Stochastic Model for the Predator-Prey Type of Interaction Between Two Species,” Biometrika, vol. 47, no. 3&4, pp. 219–234, 1960, doi: 10.2307/2333294.
Y. Cai, C. Zhao, W. Wang, and J. Wang, “Dynamics of a Leslie-Gower predator-prey model with additive Allee effect,” Appl. Math. Model., vol. 39, no. 7, pp. 2092–2106, 2015, doi: 10.1016/j.apm.2014.09.038.
H. S. Panigoro, E. Rahmi, N. Achmad, and S. L. Mahmud, “The Influence of Additive Allee Effect and Periodic Harvesting to the Dynamics of Leslie-Gower Predator-Prey Model,” Jambura J. Math., vol. 2, no. 2, pp. 87–96, 2020, doi: 10.34312/jjom.v2i2.4566.
M. Onana, B. Mewoli, and J. J. Tewa, “Hopf bifurcation analysis in a delayed Leslie–Gower predator–prey model incorporating additional food for predators, refuge and threshold harvesting of preys,” Nonlinear Dyn., vol. 100, no. 3, pp. 3007–3028, 2020, doi: 10.1007/s11071-020-05659-7.
S. Sharma and G. P. Samanta, “A Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge,” Chaos, Solitons and Fractals, vol. 70, no. 1, pp. 69–84, 2015, doi: 10.1016/j.chaos.2014.11.010.
J. J. Zhao, M. Zhao, and H. Yu, “Effect of prey refuge on the spatiotemporal dynamics of a modified leslie-gower predator-prey system with holling type III schemes,” Entropy, vol. 15, no. 6, pp. 2431–2447, 2013, doi: 10.3390/e15062431.
A. S. Purnomo, I. Darti, and A. Suryanto, “Dynamics of eco-epidemiological model with harvesting,” AIP Conf. Proc., vol. 1913, 2017, doi: 10.1063/1.5016652.
X. Zhou, J. Cui, X. Shi, and X. Song, “A modified Leslie-Gower predator-prey model with prey infection,” J. Appl. Math. Comput., vol. 33, no. 1–2, pp. 471–487, 2010, doi: 10.1007/s12190-009-0298-6.
R. Bhattacharyya and B. Mukhopadhyay, “On an eco-epidemiological model with prey harvesting and predator switching: Local and global perspectives,” Nonlinear Anal. Real World Appl., vol. 11, no. 5, pp. 3824–3833, 2010, doi: 10.1016/j.nonrwa.2010.02.012.
N. Apreutesei and G. Dimitriu, “On a prey-predator reactiondiffusion system with Holling type III functional response,” J. Comput. Appl. Math., vol. 235, no. 2, pp. 366–379, 2010, doi: 10.1016/j.cam.2010.05.040.
A. A. Shaikh, H. Das, and N. Ali, “Study of a predator–prey model with modified Leslie–Gower and Holling type III schemes,” Model. Earth Syst. Environ., vol. 4, no. 2, pp. 527–533, 2018, doi: 10.1007/s40808-018-0441-1.
DOI: https://doi.org/10.34312/jjom.v3i1.7281
Copyright (c) 2021 A.L. Firdiansyah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jambura Journal of Mathematics has been indexed by
Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS.
Editorial Office
Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.