Indexing metadata

Optimisasi Hyperparameter BiLSTM Menggunakan Bayesian Optimization untuk Prediksi Harga Saham


 
Dublin Core PKP Metadata Items Metadata for this Document
 
1. Title Title of document Optimisasi Hyperparameter BiLSTM Menggunakan Bayesian Optimization untuk Prediksi Harga Saham
 
2. Creator Author's name, affiliation, country Fandi Presly Simamora; Universitas Mikroskil; Indonesia
 
2. Creator Author's name, affiliation, country Ronsen Purba; Universitas Mikroskil; Indonesia
 
2. Creator Author's name, affiliation, country Muhammad Fermi Pasha; Universitas Mikroskil; Indonesia
 
3. Subject Discipline(s)
 
3. Subject Keyword(s) BiLSTM; Bayesian Optimization; Hyperparameter Tuning; Stock Price Prediction
 
4. Description Abstract The accuracy of deep learning models in predicting dynamic and non-linear stock market data highly depends on selecting optimal hyperparameters. However, finding optimal hyperparameters can be costly in terms of the model's objective function, as it requires testing all possible combinations of hyperparameter configurations. This research aims to find the optimal hyperparameter configuration for the BiLSTM model using Bayesian Optimization. The study was conducted using three blue-chip stocks from different sectors, namely BBCA, BYAN, and TLKM, with two scenarios of search iterations. The test results show that Bayesian Optimization was able to find the optimal hyperparameter configuration for the BiLSTM model, with the best MAPE values for each stock: BBCA 1.2092%, BYAN 2.0609%, and TLKM 1.2027%. Compared to previous research on Grid Search-BiLSTM, the use of Bayesian Optimization-BiLSTM resulted in lower MAPE values.
 
5. Publisher Organizing agency, location Department of Mathematics, Universitas Negeri Gorontalo
 
6. Contributor Sponsor(s)
 
7. Date (YYYY-MM-DD) 2025-02-01
 
8. Type Status & genre Peer-reviewed Article
 
8. Type Type
 
9. Format File format PDF
 
10. Identifier Uniform Resource Identifier https://ejurnal.ung.ac.id/index.php/jjom/article/view/27166
 
10. Identifier Digital Object Identifier (DOI) https://doi.org/10.37905/jjom.v7i1.27166
 
11. Source Title; vol., no. (year) Jambura Journal of Mathematics; Vol 7, No 1: February 2025
 
12. Language English=en en
 
13. Relation Supp. Files
 
14. Coverage Geo-spatial location, chronological period, research sample (gender, age, etc.)
 
15. Rights Copyright and permissions Copyright (c) 2025 Fandi Presly Simamora, Ronsen Purba, Muhammad Fermi Pasha
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.