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1. INTRODUCTION 

The Covid - 19 epidemic is currently causing authorities and public health officials 

more anxiety. Due to the vast number of infected and fatalities reported worldwide, it is 

regarded as the greatest global menace. The World Health Organization (WHO) reported 

that 539906 people had died and 11669259 had been confirmed as having the disease as of 

July 8th, 2020  (Ayinde et al 2020). The COVID-19 Pandemic is primarily spread by close 

contact (effective contact), particularly through the minute beads created by coughing, 

sneezing, or speaking. The main symptoms include persistent chest pain or pressure, fever, 

headache, loss of taste and smell, runny nose, and diarrhea.  

Mathematical modeling has been used to examine the dynamics of many 

complicated COVID-19 systems, both physically and physiologically (Nesteruk 2020), 

(Liu et al 2020), (Tang et al 2020). Since the disease was identified as the greatest global 

threat, mathematical models have been developed to examine how the pandemic spreads 

(see [(Asamoah et al 2020), (Asamoah et al 20201),(Abdo et al 2020), (Al – qaness et al 

2020), (Anastassopoulou et al 2020), Ayinde et al 2020),(Engbert et al 2020),(Hay 2019) 

and (Rihan et al 2020)], and the deterministic model is the most used one in modeling 

studies of COVID-19). Even though, a deterministic model yields the same outcomes 

under identical circumstances, and it is well known that the parameters utilized in a 

mathematical model of a communicable disease are subject to change in various 

experiments [(Jumanne and Naboth 2020), Zafer et al 2020)]. Since most deterministic 
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models presume that all input variables are functions of time and that biological processes 

are stochastic, neglecting their fundamental randomness is likely to provide findings that 

are inaccurate and misleading (Ndairou et al 2018), (Ndij and Supriatna 2017), (Nesteruk 

2020) 

The stochastic component of the COVID-19 pandemic has also been rigorously 

explored by a number of writers [(He and Libin 2020),(Mohammed and Modeste 

2021),(Rihan et al 2020),(Sultan et al 2020) and Zizhen et al 2020)]. The proposed 

deterministic model was transformed to a stochastic model for this investigation. Euler 

Maruyama was used for numerical simulations, and MATLAB was used for analysis. 
 

2. RESEARCH METHOD  

The expanded SEIR model was used in this study to simulate the COVID-19 

epidemic in Nigeria. The model took into account the entire population as (N), and it 

divided the human population at time (t) into seven (7) sub classes: Susceptible (S), 

Exposed (E), Infected class (I), Isolated class ( SI ), Aware class ( )mS  and Recovered class 

(R), as well as the Cumulative density of awareness programs by media denoted by. It is 

also assumed that only contact between susceptible and infected people causes COVID-19 

to spread. The pace at which new people enter the susceptible population through births 

and immigration is indicated by the number. As a result of the awareness campaigns, 

Susceptible people create a distinct class and stay away from infected people . 

Let    be the rate of dissemination of awareness among Susceptible, which results 

in the creation of another class, 0  the rate of transfer of aware people to the susceptible 

class, k  is   the rate of implementation of awareness programs, and 0k   the rate of 

depletion of these programs as a result of sociological issues. These sociological issues 

include the lack of palliatives during the lockdown and religious prohibitions on the use of 

alcohol-based hand sanitizer. Let   be the transmission rate from Susceptible to the 

Exposed class 
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Figure 1. Schematic Diagram of the proposed COVID-19 model 
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Based on the information above and earlier research(Stephen et al 2015), (Misra et 

al 2011,(Kumama and Koya 2019), (He and Libin 2020),(Liu et al 2020),  the dynamics of 

the model are controlled by the following system of non-linear differential equations 
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Where ( ) ( ) ( ) ( ) ( ) ( ) ( ) 00,00,00,00,00,00,00  MRSIIES ms . The 

parameters of the model (2.1) are presented in table 1 below. 

Due to the fact that NRSIIES ms =+++++ . The above system reduces to the following 

system. 
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2.1 The reproduction Number (R0) 

The numerical value of  basic reproductive number indicates the status of endemic 

in the population.  Going by [(Van and Watmough 2020) and (Ming et al 2020)], Let G be 

a next generation matrix which comprises of two parts F and 
1−V  where 
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iF is the new infections, while the iV  transfers of infections from one compartment to 

another. 0X is the disease free equilibrium state. 

1−= FVG           (3)  

we are concerned with  sIandIE,  compartments of the model (2). Thus 
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Hence, we have 
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2.2 Stochastic Model Equations 

 The stochastic model equations of the above deterministic model can be obtained using 

the method proposed by [(Allen et al 2008), Allen 2008), Allen and Jr (2012) and 

Mohammed and modeste 2021)]. 

The drift vector is defined as; 

i

i
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=
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18
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 where ip  and i


are   transition probabilities and random changes respectively, 

 

Table 1:  Transition Probabilities  

Random Changes ( )i  Probability ( )ip        Event 

 0000001
T

 1p = t  Birth of a Susceptible 

 0000001−
T

 2p = tS  Susceptible dies natural death 

 0000011−
T

 
3p = tSI  Susceptible becomes Exposed 

 0010001−
T

 
4p = tSM  Susceptible becomes Aware 



183 

 

Jambura Journal of Probability and Statistics. 1(2): 179-191 

 0000010 −
T

 
5p = tE  Exposed individual dies Natural  

death 

 0001010 −
T

 
6p = tE  Exposed individual becomes 

Isolated 

 0000110 −
T

 7p = tE  Exposed individual becomes 

Infected 

 0000100 −
T

 
8p = tI  Infectious individual dies Natural 

death 

 0001100 −
T  

9p = tI  Infectious individual Isolated 

 0100100 −
T

 
10p = tI  Infectious individual Recovers 

 0000100 −
T

 
11p = tI  Infectious individual dies disease 

induced death 

 0001000 −
T

 12p = tI S  Isolated individual die Naturally 

 0101000 −
T

 
13p = tI S  Isolated individual  Recovers 

 0010000 −
T

 
14p = tSm  Aware class dies Naturally 
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T
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 0100000 −
T

 16p = tR  Recovered individual die 

Naturally 

 1000000
T  

17p = tI  Media (Awareness program are 

implemented) 

 1000000 −
T  

18p = tMo   Reduction in awareness program 

due to the population 


=
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Where V is the covariance matrix, given as : 

         (8) 

 

Thus, we obtained the covariance matrix v of order 7x7 as 
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Hence , the stochastic model is presented as 
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Where the drift vector 
→

f  of order 7x1, ip and 
i

→

(i=1,…,18) are random changes 

and transition probabilities represented in the  above table.
 

  The diffusion matrix is obtained from the entries 
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 TWWWWWWWWWWWWWWWWWWW 1817161514131211109876,54321 ,,,,,,,,,,,,,,,,=
→

  (10) 

is a Vector of eighteen independent Wiener processes. In addition, dW (t) has order 

18x1 While Xd


 is a  7x1 dimensional vector. if  are given as; 
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Thus, the elements of the diffusion matrices are; 

Hence,
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Both if  and jig , are   continuously differentiable at MRSIIES ms ,,,,,,  and hence 

satisfy the Lipchitz condition by (mean value theorem), since norm exist they are bounded. 

The drift and the diffusion matrices are therefore bounded, hence satisfy the condition for 

existence.  

 
3. RESULT AND DISCUSSION.

 
This section focused on numerical interpretation of the stochastic model using 

Euler Maruyama method coded with Matlab  (Fadugba  et al 2013). (Zafer et al,2017) and 

( Zizhen et al 2020) .The numerical results were presented graphically followed by the 

discussion .   
 

 

Figure 2. Graph of Awareness for varying value of   
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It was observed from figure 2 that when   is increases from 0.1 to 0.4, the aware 

population is increasing, at time (year) = 0.4, the aware population when is 30 when 

1.0=  while it is 35 when 4.0= . Also, it increases from 70 to 80 when    is increases 

from 4.0= to 7.0= .This also may be as a result of awareness of preventive measure. 

 

Figure 3. Graph of Infected Population for varying value of   
 

It was observed from figure 3 that when   is increases from 0.1 to 0.4, the infected 

population is decreasing, at time (year)=0.9, the infected  population  is 54 when 1.0=  

while it is 52 when 4.0= . Also, it decreases from 52 to 49 when    is increases from 

4.0= to 7.0= . 

 

Figure 4. Graph of Infected Population for varying value of   
 

It was observed that figure 4 display similar behavior as fig.3, the expose 

population decreases , at time (year)=0.9, the infected  population  move from 60 to 55 and 

51  when    is increases from 1.0=  , 4.0= and  7.0=  respectively. 
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Figure 5. Graph of Awareness for varying value of k  
 

It was observed from figure 5 that when k  is increases from 0.0 to 0.3, the 

awareness population is increasing, at time (year)=0.5, the awareness  population moves 

from 27 to 48, it also increases from 69 to 740  when  k  is increases from 6.0=k to 

8.0=k . 

 

Figure 6. Graph of Isolation for varying value of k  
 

It was observed from figure 6 that when k  is increases from 0.0 to 0.3, the isolation 

population is decreasing, at time (year)=0.8, the awareness  population moves from 53 to 

50. 
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Figure7. Graph of Infected for varying value of k  
 

It was observed from figure 7 that when k   increases from 0.0 to 0.3, the infected 

population is decreasing, at time (year)=0.5, the infected  population moves from 27 to 48, 

it also decrease from 74 to 69  when  k  is increases from 6.0=k to 8.0=k . 

 

Figure.8. Graph of Awareness for varying value of k  
 

It was observed from figure 8 that when k  is increases from 0.0 to 0.3, the Exposed 

population is decreasing, at time (year)=0.5, the awareness  population moves from 48 to 

27, it also increases from 74 to 69  when  k  is increases from 6.0=k to 8.0=k . 
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Figure 9. Graph of Isolation for varying value of   

It was observed from figure 9 that when   increases from 0.1 to 0.3, the isolation 

population is decreasing, at time (year) =0.8, the awareness population moves from 53 to 

50 
4. CONCLUSION 

In order to examine the impact of media-driven awareness campaigns on the spread 

of COVID-19, a modified dynamic model to stochastic model for the COVID-19 

transmissions was developed and examined in this work. According to the model study, 

COVID-19 extinction will result from an increase in the rate at which awareness activities 

are implemented. 

 

References  

Asamoah J.K.K, Jin Z, Sun G.Q, Seidu B, Yankson E, Oduro F, Abidemi A, Moore S.E, 

 Okyere E (2021): Sensitivity assessment and optimal economic evaluation of a new 

COVID – 19 compartmental epidemic model with control interventions. Chaos 

Solitons Fractals 146, 110885, https://doi.org/10.1016/jchaos.2021.110885  

Asamoah J.K.K, Owusu M.A, Jin Z, Oduro F, Abidemi A, Gyasi E.O (2020): Globa 

stability and cost – effectiveness analysis of COVID – 19 considering the impact of 

the environment:  using data from  Ghana . Chaos Solitons Fractals 140,110103 

https://doi.org/10.1016/j.chaos.2020.110103 

Abdo, M.S., Hanan, K.S., Satish, A.W., Pancha, K.: (2020): On a comprehensive model of 

the novel coronavirus (COVID-19) under mittag – Leffler derivative, Chaos 

solutions fractals 135, Article ID 109867. 

Al – qaness, M.A.A , Ewees, A.A, Fan H, Aziz, A. El bd and EI, M.A (2020). 

Optimization methodfor forecasting confirmed cases of COVID – 19 in China. 

Journal of clinical Medicine, 9, 674. https://doi.org/10.3390/jcm9030674. 

Allen E.J, Allen L.J.S, Arciniega A, Greenwood P.E (2008): Construction of Equivalent 

Stochastic Differential Equation Models; Stoch. Anal. Appl.26(2): 274 – 297. 

Allen, L.J.(2008): An introduction to stochastic epidemic models, In Mathematical 

epidemiology (pp. 81-130), Springer,Berlin, Heidelberg. 

 

https://doi.org/10.1016/jchaos.2021.110885
https://doi.org/10.1016/j.chaos.2020.110103
https://doi.org/10.3390/jcm9030674


 
190 

 

Bashiru K. Adekunle (Stochastic Model Analysis………) 

Allen L. J. S. and Jr. L.,(2012): Extinction thresholds in deterministic and stochastic 

epidemic models, Journal of Biological Dynamics, 6, pp. 590–611. 

Anastassopoulou, C, Russo, I, Tsakris A and Siettos C(2020). Data – based analysis, 

modeling and forecasting of the COVID -19 outbreak. PLoS One, 15, Article 

e0230405. https:doi.org/10.1371/journal.pone.0230405. 

Ayinde, K, Lukman A.F, Rauf I.R, Alabi O.O, Okon C.E and Ayinde O.E (2020): 

Modeling Nigerian COVID – 19 cases: A comparative analysis of models and 

estimators. Chaos, Solitons and fractals,138, Article 109911. 

Bastista  M (2020): Estimation of the final size of the coronavirus epidemic by SIR model. 

Research Gate. 

Djordjevic J, Silva C.J, Torres DFM (2018): A Stochastic SICA Epidemic model for HIV 

transmission. Appl. Math. Let.; 84: 168 – 175. Doi:10.1016/jani.2018.005. 

Engbert R, Rabe MM, Kliegl R, Reich S (2020) Sequential data assimilation of the 

stochastic SEIR epidemic model for regional COVID-19 dynamics. Bull Math Biol 

10000:1000. https:// doi. org/10. 1101/ 2020. 04. 13. 20063 7687 

Fadugba, S.E., Adegboyegun, B.J. and Ogunbiyi, O.T. (2013) On Convergence of Euler 

Maruyama and Milstein Scheme for Solution of Stochastic Differential Equations. 

International Journal of Applied Mathematics and Modeling, 1, 9-15 

Hay Yoba Talkibing , Barro Diakarya and Ouoba Fabrice (2019): Stochastic approach of 

epidemic model using the SEIRS; European Journal of Pure and Applied 

Mathematics. 12 (3) Pg 834 – 845. 

Higham, D(2001): An algorithmic introduction to numerical simulation of stochastic 

differential equations. SIAM Rev. 43, 525 – 546. 

He Sha, Sanyi Tang and Libin Rong (2020): A discrete Stochastic model for the COVID – 

19 Outbreak: forecast and control. Mathematical Biosciences and Engineering. 

Vol.17, issue 4:2792 – 2804 doi:10.3934/inbe.2020153. 

Ito K (1951): On Stochastic Differential Equation “memoirs of American Mathematical 

Society (4): 1 – 51.  

Wu J, Fred Brauer and Pauline Van den Driessche (1945): Lecture Note in Mathematics. In 

Oxford Mathematical Biosciences subseries: P.K Maini, editor, Mathematical 

Epidemiology. 

Jumanne M. Mnganga and Naboth Sindi Zachariah (2020): Mathematical Model of 

COVID – 19 Transmission dynamics and control strategies. Journal of Applied and 

Computational Mathematics. Vol. 9:1. DOI : 10.37421/jacm.2020.9.453 

Kumama Regassa and Purmachandra Rao Koya (2019): Modelling and Analysis of 

Population Dynamics of Human Cells Pertaining to HIV/AIDS with Treatment, 

American Journal of Applied Mathematics. Vol. 7, No. 4, Pp127 – 136. Doi 

:10.11648/j.ajam.20190704.14. 

Liu .Z, Magal P, Seydi O, Webb . C (2020): understanding unreported cases in the 2019- 

ncov 

epidemic outbreak in Wuhan,China and importance of major public Health intervention, 

MPDI biology, 9(3) P.50. 
Misra A.K, Anupama Sharma and Shukla J.B(2011): Modeling an analysis of effects of 

awareness programs by media on the spread of infectious diseases. Mathematical and 

Computer Modeling. 53: 1221 – 1228. 

Mohamed Coulibaly* and Modeste N’zi (2021): A Stochastic Model with Jumps for the 

COVID-19 Epidemic in the Greater Abidjan Region during Public Health Measures.  

J. Infect Dis Epidemiol 2021, 7:196 Volume 7 | Issue 3 DOI: 10.23937/2474-

3658/1510196 



191 

 

Jambura Journal of Probability and Statistics. 1(2): 179-191 

 

Nesteruk I (2020): Statistics – based predictions of coronavirus epidemic spreading in 

Mainland China, “ innovative Biosystems and Bioengineering, vol. 4, no 1, pp 13 – 

18. 

Ndii, M.Z. and Supriatna, A.K.(2017): Stochastic mathematical models in epidemiology, 

Information, 20(9A), pp.6185-6196. 

Ndairou F, Area I, Nieto J.J and Silva C.J (2018): Mathematical modeling of Zika disease 

in pregnant women and newborn with microcephaly in Brazil. Math Methods Appl 

Sci 41:89. 29 – 41. 

Rihan F.A, Alsakaji H.J and Rajivganthi C (2020) : Stochastic SIRC epidemic model with 

time delay for COVID-19. Advances in Difference Equations ,2020:502 

https://doi.org/10.1186/s13662020-02964-8 

Rodrigues HS, Monteiro MTT, Torres DFM (2013). Sensitivity analysis in a dengue 

epidemiological model. Conference papers in mathematics. Hindawi, editor. Doi: 

10.1155/2013/721406. 

Stephen E, Kitengeso R.E, Kiria G.T and Felician N (2015): A Mathematical model for 

control and Elimination of the transmission dynamics of measles. Appl Math Comput 

4:396 – 408. 

Sultan Hussain, Anwar Zeb, Akhter Rasheed and Tareq Saeed (2020): Stochastic 

mathematical model for the spread and control of Corona virus. Advances in 

Difference Equations , 2020:574.  https://doi.org/10.1186/s13662-020-03029-6 

Tang .B, Bragazzi N.L, Li O, Tang .S, Xio .Y, Wu .J(2020): An updated estimation of the 

risk of transmission of the novel corona virus (2019-nCov). Infectious disease 

modeling, 5, pp 248 – 255 

Van D.P and Watmough J (2020): “Reproduction number and sub – threshold endemic 

equlibria for compartmental models of disease transmission” Math. Biosc/180 :29 – 

48. 

W. Ming, J.V. Huang and C.J.P Zhang (2020): Breaking down of the healthcare system:   

mathematical modeling for controlling the novel coronavirus ( 2019 – nCoV) outbreak in 

Wuhan, China, medRxiv and bioRxiv. 

Zafer Bekiryazia, Tulay Kasemen and Mehmet Merdan (2017) : Stochastic and random 

models of malaria disease with vertical transmission. New trends in Mathematical 

Sciences; 5(1).Pg 269 – 277. Doi.org/10.20852/ntmsci.2017.146. 

Zizhen .Z, Anwar .Z, Sultan .H and Ebraheem .A(2020): Dynamics of COVID – 19 

Mathematical model with stochastic perturbation. Advances in Difference Equations , 

2020:451.  https://doi.org/10.1186/s13662-020-02909-1 

 

 

 
 

 

 
 

https://doi.org/10.1186/s13662020-02964-8
https://doi.org/10.1186/s13662-020-03029-6

