ANALISIS KLASIFIKASI ARTIST MUSIC MENGGUNAKAN MODEL REGRESI LOGISTIK BINER DAN ANALISIS DISKRIMINAN

ANDREA TRI RIAN DANI, VITA RATNASARI, LUDIA NI'MATUZZAHROH, IGAR CALVERIA AVIANTHOLIB, RADITYA NOVIDIANTO, NARITA YURI ADRIANINGSIH

Abstract


Characteristics of a song are an important aspect that must be kept authentic by a singer. Using the Spotify API feature, we can extract the characteristics or elements of a song sung by a singer.  There are eight (8) elements that we can get from the extraction of a song, namely: Danceability, Energy, Loudness, Speechiness, Acousticness, Liveness, Valence, and Tempo. Based on the extraction results, we can label the music artist using the classification analysis method. In this study, the labels are music artists, namely Ariana Grande and Taylor Swift. This study aims to obtain the classification of music artist labels using binary logistic regression methods and discriminant analysis. The response variable used in this study is Artist Music (Y) which is categorized into two categories, namely Ariana Grande (Y=0) and Taylor Swift (Y=1). The data will be divided into training and testing data with the proportion of data 90:10 and 80:20. Based on the results of the analysis, the binary regression model that was built, with the proportion of training testing data that is 90:10 has a classification accuracy for data testing of 90.00%.

Keywords


Discriminant Analysis, Classification, Binary Logistic Regression

Full Text:

PDF

References


Al-Beitawi, Z., Salehan, M., & Zhang, S. (2020). What Makes a Song Trend? Cluster Analysis of Musical Attributes for Spotify Top Trending Songs. In Journal of Marketing Development and Competitiveness (Vol. 14, Issue 3, pp. 79–91). https://doi.org/10.33423/jmdc.v14i3.3065

Ainurrochmah, A., Hayati, M. N., & Satriya, A. M. A. (2019). Perbandingan Klasifikasi Analisis Diskriminan Fisher dan Metode Naïve Bayes. Jurnal Aplikasi Statistika & Komputasi Statistik, 11(2), 37-48.

Annas, S., & Irwan. (2015). Penerapan Analisis Diskriminan dalam Pengelompokkan Desa Miskin di Kabupaten Wajo. SCIENTIFIC PINISI, 1(1), 34–43.

Fitria, A., & Azis, H. (2018). Analisis Kinerja Sistem Klasifikasi Skripsi menggunakan Metode Naïve Bayes Classifier. Prosiding Seminar Nasional Ilmu Komputer Dan Teknologi Informasi, 3(2), 102–106.

Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi. Jurnal Teknoinfo, 14(2), 115–124. https://doi.org/10.33365/jti.v14i2.679

Hapsary, Maharani Shandra Ayu; Subiyanto, S., & Firdaus, H. S. (2021). Analisa Prediksi Perubahan Penggunaan Lahan Dengan Pendekatan Artificial Neural Network Dan Regresi Logistik Di Kota Balikpapan. Geodesi Undip, 10(2), 88–97.

Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression (2nd ed.). John Wiley & Sons, Inc.

Jung, H., (2018). The Data Science of K-Pop: Understanding BTS through data and A.I. (https://towardsdatascience.com/the-data-science-of-k-pop-understanding-bts-through-data-and-a-i-part-1-50783b198ac2) diakses pada tanggal 01 April 2022.

Ketut, I., Suniantara, P., & Rusli, M. (2017). Klasifikasi Waktu Kelulusan Mahasiswa Stikom Bali Menggunakan Chaid Regression – Trees dan Regresi Logistik Biner. Statistika, 5(1), 27–32.

Mattjik, A. A., & Sumertajaya, I. M. (2011). Sidik Peubah Ganda dengan Menggunakan SAS. In Sidik Peubah Ganda Dengan menggunakan SAS. Institut Pertanian Bogor (IPB Press).

Nabila, R., Himmati, R., & Erdkhadifa, R. (2021). Perbandingan Regresi Logistik Multinomial dan Analisis Diskriminan. Journal of Islamic Tourism, 1(2), 135–150.

Novianti, F. A., & Purnami, S. W. (2012). Analisis Diagnosis Pasien Kanker Payudara Menggunakan Regresi Logistik dan Support Vector Machine (SVM) Berdasarkan Hasil Mamografi. Jurnal SAINS Dan Seni ITS, 1(1), D147–D152.

Nugroho, S. (2008). Statistika Multivariat Terapan (1st ed.). UNIB Press.

Octisari, S. K., Wijaya, M., & Baroroh, A. A. (2021). Pendekatan Regresi Logistik Pada Perataan Laba. Eksis: Jurnal Ilmiah Ekonomi Dan Bisnis, 12(1), 49–53. https://doi.org/10.33087/eksis.v12i1.236

Rajagukguk, N., Ispriyanti, D., & Wilandari, Y. (2015). Perbandingan Metode Klasifikasi Regresi Logistik Biner Dan Naive Bayes Pada Status Pengguna Kb Di Kota Tegal Tahun 2014. Gaussian, 4(2), 365–374.

Santana, I. A. P., Pinhelli, F., Donini, J., Catharin, L., Mangolin, R. B., Da Costa, Y. M. E. G., Delisandra Feltrim, V., & Domingues, M. A. (2020). Music4All: A New Music Database and Its Applications. International Conference on Systems, Signals, and Image Processing, 399–404. https://doi.org/10.1109/IWSSIP48289.2020.9145170

Suwardika, G. (2017). Pengelompokan Dan Klasifikasi Pada Data Hepatitis Dengan Menggunakan Support Vector Machine (SVM), Classification And Regression Tree (Cart) Dan Regresi Logistik Biner. Journal of Education Research and Evaluation, 1(3), 183–191. https://doi.org/10.23887/jere.v1i3.12016




DOI: https://doi.org/10.34312/jjps.v3i1.13708

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jambura Journal of Probability and Statistics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Editorial Office of Jambura Journal of Probability and Statistics:
 
Department of Statistics, 3rd Floor Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B.J Habibie, Tilongkabila Kabupaten Bone Bolango, 96119
Telp: +6285398740008 (Call/SMS/WA)
E-mail: redaksi.jjps@ung.ac.id

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor