PERBANDINGAN METODE ANN BACKPROPAGATION DAN ARMA UNTUK PERAMALAN INFLASI DI INDONESIA

M. Hadiyan Amaly, Ristu Haiban Hirzi, Basirun Basirun

Abstract


A country's development progress can be measured by good economic growth. If economic growth experiences rapid growth, it will usually trigger price increases. The occurrence of an uncontrolled increase in the price of goods or services for the needs of the community can cause inflation. inflation rate for a country is an inflation rate that has a low and stable value. One alternative is to provide an overview of the inflation in Indonesia by using forecasting analysis techniques. In this study, inflation forecasting analysis in Indonesia was carried out using the ANN Backpropagation and ARMA methods. The purpose of this research is to compare the performance results of the two methods and look at the best method for forecasting results. Based on the results of the analysis with the ANN Backpropagation method, the best network architecture model was ANN(7-4-1) using an epoch value of 400 and a learning rate of 0,1 with a value of MSE = 0,0112 and RMSE = 0,1065. While the results of the analysis using the ARMA method, the best model was obtained, namely ARMA(2,0,1) with the value MSE = 0,0648 and RMSE = 0,2545. So that the most optimal method used to predict inflation for the next period is the ANN Backpropagation method because it has a smaller error value. From this model, the results of forecasting inflation rates for the months of May to December 2022 are also obtained with a range of 0,01% to 0,5%. 

Keywords


Inflation; Forecasting; ANN Backpropagation; ARMA

Full Text:

PDF

References


Apriaini, Y., & Sofian, I. . (2017). Metode Peramalan Jaringan Saraf Tiruan Menggunakan Algoritma Backpropagatin (Studi Kasus Peramalan Curah Hujan Kota Palembang). Indonesian Journal of Mathematics and Natural Sciences, 40(2), 87–91.

Aprileven, H. P. (2015). Pengaruh Faktor Ekonomi Terhadap Inflasi yang Dimediasi oleh Jumlah Uang Beredar. Economics Development Analysis Journal, 4(1), 32–41.

Ardiansyah, H. (2017). Pengaruh inflasi terhadap pertumbuhan ekonomi di Indonesia. Jurnal Pendidikan Ekonomi, Vol.5(No.3).

Dongare, A. D., Kharde, R. R., & Kachare, A. D. (2012). Introduction to Artificial Neural Network ( ANN ) Methods. International Journal of Engineering and Innovative Technology (IJEIT), 2(1), 189–194.

Fauji, S. A., & Kusumastuti, A. (2015). Analisis Fungsi Aktivasi Jaringan Syaraf Tiruan untuk Mendeteksi Karakteristik Bentuk Gelombang Spektra Babi dan Sapi. Unisda Journal Mathematics and Computer Science Jurusan (UJMC), 1(1), 55–64.

Hauriza, B., Muladi, M., & Wirawan, I. M. (2021). Prediksi Tingkat Inflasi Bulanan Indonesia Menggunakan Metode Jaringan Saraf Tiruan. Jurnal Teknologi Dan Informasi, 11(2), 152–167. https://doi.org/10.34010/jati.v11i2.4924

Karomah, Y., & Hendikawati, P. (2014). Estimasi Parameter Boostrap pada Proses ARMA dan Aplikasinya pada Harga Saham. UNNES Journal of Mathematics, 3(2), 126–135.

Ngestisari, W., Susanto, B., & Mahatma, T. (2020). Perbandingan Metode ARIMA dan Jaringan Syaraf Tiruan untuk Peramalan Harga Beras. Indonesian Journal of Data and Science (IJODAS), 1(3), 96–107.

Nugraha, H. G., & Azhari, S. (2014). Optimasi Bobot Jaringan Syaraf Tiruan Mengunakan Particle Swarm Optimization. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 8(1), 25–36. https://doi.org/10.22146/ijccs.3492

Pandji, B. Y., Rohmawati, A. A., & Indwiarti. (2019). Perbandingan prediksi harga saham dengan model arima dan. Indonesian Journal of Computing, 4(2), 189–198. https://doi.org/10.21108/indojc.2019.4.2.344

Panjaitan, H., Prahutama, A., & Sudarno. (2018). PERAMALAN JUMLAH PENUMPANG KERETA API MENGGUNAKAN METODE ARIMA, INTERVENSI DAN ARFIMA (Studi Kasus : Penumpang Kereta Api Kelas Lokal EkonomiDAOP IV Semarang) 1,2,3. JURNAL GAUSSIAN, 7(1), 96–109.

Pawestri, V., Setiawan, A., & Linawati, L. (2019). Pemodelan Data Penjualan Mobil Menggunakan Model Autoregressive Moving Average Berdasarkan Metode Bayesian. Jurnal Sains Dan Edukasi Sains, 2(1), 26–35.

Wahyuddin. (2019). Prediksi Inflasi Indonesia Memakai Model ARIMA dan Artificial Neural Network. Jurnal Tata Kelola Dan Kerangka Kerja Teknologi Informasi, 5(2), 57–63.

Yasin, M. (2020). Analisis Pendapatan Asli Daerah dan Belanja Pembangunan Terhadap Pertumbuhan Ekonomi Di Kabupaten/Kota Jawa Timur. Journal of Economic, Business and Accounting, 3(2), 465–472.

Yusuf, F. I., & Anjasari, D. H. (2018). Metode Triple Exponential Smoothing Holt-Winters untuk Peramalan Jumlah Wisatawan Nusantara di Kabupaten Banyuwangi. Unisda Journal of Mathematics and Computer Science (UJMC), 4(2), 1–6.




DOI: https://doi.org/10.34312/jjps.v3i2.15440

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jambura Journal of Probability and Statistics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Editorial Office of Jambura Journal of Probability and Statistics:
 
Department of Statistics, 3rd Floor Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B.J Habibie, Tilongkabila Kabupaten Bone Bolango, 96119
Telp: +6285398740008 (Call/SMS/WA)
E-mail: redaksi.jjps@ung.ac.id

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor