PEMODELAN VECTOR AUTOREGRESSIVE EXOGENOUS (VARX) UNTUK MERAMALKAN DATA EKSPOR TOTAL DAN IMPOR TOTAL DI INDONESIA
Abstract
Vector Autoregressive Exogenous (VARX) is a multivariate time series model which is a development of the Vector Autoregressive (VAR) model. VARX model is a forecasting model that involves endogenous variables and exogenous variables. The endogenous variables in this study are exports and total imports in Indonesia, then the exogenous variable in this study is the composite stock price index in Indonesia. The purpose of this study is to VARX model the export and total import data in Indonesia for the period January 2016 to December 2021 and predict it for the period January 2022 to December 2022. Based on the result of the analysis, the best model for forecasting export and total imports is the VARX(2.2) model with the MAPE value for the total export variable of 5.938% and the total import variable of 8.313%. Furthermore, the results of forecasting total exports have increased in the period January 2022 to December 2022, with forecasting results for January 2022 of US$21,383.06 million and December 2022 of US$23,569.50 million. The results of forecasting total imports have increased in the period January 2022 to December 2022, with forecasting results in January 2022 of US$17,743.17 million and December 2022 of US$20,269.07 million.
Keywords
Full Text:
PDFReferences
Alfirman, L. and Sutriono, E. (2005). “Analisis Hubungan Pengeluaran Pemerintah dan Produk Domestik Bruto dengan Menggunakan Pendekatan Granger Causality dan Vector Autoregression”, Jurnal Keuangan Publik, 11(2).
Awat, N. J. 1990. Metode Peramalan Kuantitatif. Yogyakarta: Liberty.
Cahyani, E. and Wachidah, N. (2020). “Pemodelan Vector Autoregressive untuk Meramalkan Impor Ekspor Migas dan Non Migas di Indonesia”, Prodising Statisika, 6(2), pp. 41-48.
Hanurowati, N., Mukid, M.A., and Prahutama, A. (2016). “Pemodelan dan Peramalan Indeks Harga Saham Gabungan (IHSG) dan Jakarta Islamic Index (JII), dan Harga Minyak Dunia Brent Crude Oil Menggunakan Metode Vector Autoregressive Exogenous (VARX)”, Jurnal Gaussian, 5(4), pp. 683-693.
Makridakis, S., Wheelwright, and McGee. (1999). Metode dan Aplikasi Peramalan. Jakarta: Binarupa Aksara.
Nisa. H.D.K. (2010). Peramalan Debit Air Sungai Brantas dengan Model GSTAR dan ARIMA. Surabaya: ITS.
Ocampo, S. and Rodriguez, N. (2012). “An Introduction Review Of a Structural VAR-X Estimation and Applications”, Revista Colombiana de Estadistic, 35(3), pp. 479-508.
Rosadi, D. (2010). Analisa Ekonometrika dan Runtun Waktu Terapan dengan R. Yogyakarta: ANDI.
Rosyidah, H., Rahmawati, R., and Prahutama, A. (2017). “Pemodelan Vector Autoregressive X (VARX) untuk Meramalkan & Uang Beredar di Indonesia”, Jurnal Gaussian, 6(3), pp. 333-343.
Satria, I. (2015). “Proyeksi Data Produk Domestik Bruto (PDB) dan Foreign Direct Investment (FDI) Menggunakan Vector Autoregressive”, Jurnal Gaussian, 4(4), pp. 895-905.
Sudjana, N. (1989). Dasar-dasar Proses Belajar Mengajar. Bandung: Sinarbaru.
Tobias, S and Carlson, J.E. (1969). “Brief Report: Bartlett’s Test of Sphericity and Chane Findings in Factor Analysis”, Multivariate Behavioral Research, 4(3), pp. 375-377
Wei, W.W.S. (2006). Time Series Analysis Univariate and Multivariate Methods. Second Edition. USA: Pearson Education.
Widarjono, A. (2016). Ekonometrika Pengantar dan Aplikasinya. Edisi keempat. Yogyakarta: UPP STIM YKPN.
DOI: https://doi.org/10.34312/jjps.v3i2.15527
Refbacks
Copyright (c) 2022 Jambura Journal of Probability and Statistics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.