PEMODELAN PENYAKIT INFEKSI SALURAN PERNAFASAN AKUT DI DAERAH SEKITAR SEMBURAN LUMPUR LAPINDO SIDOARJO DENGAN PENDEKATAN MODEL MULTIVARIATE ADDITIVE REGRESSION SPLINE

Mahfudhotin Mahfudhotin

Abstract


The phenomenon of hot mudflow in Sidoarjo is interesting to be investigated further. Regarding the cause, the disaster occurred due to drilling errors resulting in the Lapindo mudflow which resulted in gas emissions causing health problems, especially those related to the respiratory tract, namely respiratory tract infections (ARI). Risk factors that can affect the incidence of ARI in general are socio-demographic, biological, housing and density factors and pollution. Therefore, this study aims to obtain a model for classifying ARI patient data in the Jabon, Tanggulangin, and Porong sub-districts, Sidoarjo district with the variables that contribute to the classification. The nonparametric approach Multivariate Adaptive Regression Spline (MARS) was chosen because several previous studies stated that this method resulted in a higher classification accuracy than other classification methods. In addition, MARS is a classification method that is able to form a model with causal interactions to produce the best MARS model obtained from a combination of Maximum Interaction (MI), Basis Function (BF), and Minimum Observation (MO) values. The results of modeling with MARS there are three variables that contribute to the grouping, namely the percentage of the distance between the house and the source of the Lapindo mudflow, the number of activities outside the house, and the number of house ventilation. The overall model classification accuracy is 97,4 percent with a GCV value of 0,096 and an R2 of 82,9 percent 

Keywords


ISPA; GCV; Lapindo Mud; MARS

Full Text:

PDF

References


Agresti, A. (2011). Categorical Data Analysis. New York: John Wiley and Sons.

Arifin, M. Z. (2015). Metode Pendekatan Multivariate Adaptive Regression Spline (MARS) Bagging Dalam Memodelkan Presentase Gizi Buruk Balita di Jawa Timur. Malang: Universitas Brawijaya.

Asriani, E. D. (2016). Estimasi Multivarite Adaptive Regression Spline (MARS) Pada Indeks Harga Saham (IHSG). Semarang: Universitas Negeri Semarang.

Friedman, J. (1991). Multivariate Adaptive Regression Splines. The Annals of Statistics, Vol. 19 No. 1.

Hayati. (2014). Gambaran Faktor Penyebab Infeksi Saluran Pernafasan Akut (ISPA) Pada Balita di Puskesmas Pasirkaliki Kota Bandung. Jurnal Ilmu Keperawatan, 11 (1), 62–67.

Jalil, R. (2018). Faktor-Faktor Yang Berhubungan Dengan Kejadian Ispa Pada Balita Di Wilayah Kerja Puskesmas Kabangka Kecamatan Kabangka Kabupaten Muna. Kendari: Universitas Halu Oleo.

Kasse, I. (2017). Memodelkan Faktor-Faktor Yang Mempengaruhi Gizi Buruk Balita Dengan Metode Multivariate Adaptive Regression Spline (MARS). Matematika dan Statistika serta Aplikasinya Vol 5, No 1.

Kishartini, S. I. (2014). Multivariate Adaptive Regression Spline (MARS) untuk Klasifikasi Status Kerja di Kabupaten Demak. Universitas Diponegoro, Semarang: Jurnal Gaussian, 3(4):711-718.

Meliala, B. (2017). Regresi Spline Multivariat Adaptive (Multivariate Adaptive Regression Spline). Yogyakarta: UIN Sunan Kalijaga.

Mukono. (2008). Pencemaran udara dan pengaruhnya terhadap gangguan saluran pernapasan. Surabaya: Universitas Airlangga Press.

Otok, B. S. (2008). Pengembangan Model Klasifikasi Berbasis Machine Learning Untuk Prediksi Kapailitan Bank Umum di Indonesia.

Surabaya: Lembaga Penelitian dan Pengabdian Kepada Masyarakat Institut Teknologi Sepuluh Nopember.

Prasetyo, G. C. (2009). Klasifikasi Deteksi Intrusi Menggunakan Pendekatan Classification And Regression Trees (CART) Dan Multivariate Adaptive Regression Spline (MARS). Surabaya: Institut Teknologi Sepuluh Nopember.

Raditya, A. P. (2018). Penerapan metode Multivariate Adaptive Regression Spline (MARS) dengan estimator nadaraya-watson fungsi kernel gaussian. Yogyakarta: Fakultas MIPA UII.

Raditya, A. P. (2018). Penerapan Metode Multivariate Adaptive Regression Spline (MARS) Dengan Estimator Nadaraya-Watson Fungsi Kernel Gaussian. Yogyakarta: Universitas Islam Indonesia.

Rahmadhani, N. F. (2019). Multivariate Adaptive Regression Spline (MARS) dalam Menentukan Faktor-Faktor Kecelakaan Lalu Lintas di Kota Yogyakarta. Yogyakarta: UIN Sunan Kalijaga Yogyakarta.

Respita, R. D. (2017). Perbandingan Model Regresi Spline dan Multivariate Adaptive Regression Spline untuk Analisis Survival pada Pasien Kanker Serviks di RSUD Dr. Soetomo Surabaya. Surabaya: Institut Teknologi Sepuluh Nopember.

Rovicky. (2006). Hasil Pengujian Toksikologis Lumpur Porong Sidoarjo. Jakarta: Sucofindo, Corelab, dan Bogorlab.




DOI: https://doi.org/10.34312/jjps.v3i2.16696

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jambura Journal of Probability and Statistics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Editorial Office of Jambura Journal of Probability and Statistics:
 
Department of Statistics, 3rd Floor Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B.J Habibie, Tilongkabila Kabupaten Bone Bolango, 96119
Telp: +6285398740008 (Call/SMS/WA)
E-mail: redaksi.jjps@ung.ac.id