Prediksi Jumlah Wisatawan Menggunakan Metode Random Forest, Single Exponential Smoothing dan Double Exponential Smoothing di Provinsi NTB

Ristu Haiban Hirzi, Umam Hidayaturrohman, Kertanah Kertanah, M. Hadiyan Amaly, Rody Satriawan

Abstract


The aim of study is to forecast global tourist visits and compare the forecasting methods to determine the best method using random forest, single exponential smoothing and double exponential smoothing, respectively. These methods are applied in global tourist visit data in West Nusa Tenggara Province. Random forest, single exponential smoothing and double exponential smoothing are familiar methods and are frequently utilized in forecasting. In addition, the three methods have great accuracy for time series data, such as data of global tourist visits. The data used in this study is data of global tourist visits from 2014 to 2021 in West Nusa Tenggara province. Applying the random forest, single exponential smoothing and double exponential smoothing methods in forecasting, the result shows that double exponential smoothing method is the best, based on the smallest value of Mean Absolute Percentage Error (MAPE) of 325.759. The forecasting result found out that tourist visits will increase from previous time, starting from August, 2021 to July, 2021 with an estimated 847 to 1045 lives

Keywords


Random forest; Double exponential smoothing; Forecasting; West Nusa Tenggara

Full Text:

PDF

References


Breimen, L. (2001). Random Forest. Machine Learning, 5-32

Chen, C. C., Lai, Y. H. R., Petrick, J. F., & Lin, Y. H. (2016). Tourism between divided nations: An examination of stereotyping on destination image. Tourism Management, 55, 25-36.

Idris, Z., Kamase, J., & Tjan, J. S. (2022). Perbandingan Akurasi Sales Forecasting Menggunakan Metode Single Exponential Smoothing (SES) dan Double Exponential Smoothing (DES) pada PT. Bosowa Berlian Motor Makassar. Journal of Acccounting and Finance (JAF), 3(1), 50-57.

Ngantung, M., & Jan, A. H. (2019). Analisis Peramalan Permintaan Obat Antibiotik Pada Apotik Edelweis Tatelu. Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis Dan Akuntansi, 7(4).

Ola, P. K., & Kartiko, K. (2019). Peramalan Menggunakan Metode Fuzzy Time series Cheng dan Double Exponential Smoothing: Study Kasus: Jumlah Wisatawan Mancanegara di Candi Borobudur. Jurnal Statistika Industri dan Komputasi, 4(01), 69-79.

Pandiangan, E.K. (2018). Peramalan Banyaknya Energi Listrik yang Disalurkan dan Dijual di PT. PLN (Persero) Cabang Medan Tahun 2020.

Pranata, A., Hsb, M. A., Akhdansyah, T., & Anwar, S. (2018). Penerapan Metode Pemulusan Eksponensial Ganda dan Tripel Untuk Meramalkan Kunjungan Wisatawan Mancanegara ke Indonesia. Journal of Data Analysis, 1(1), 32-41.

Primandari, A. H. (2020). Implementasi Artificial Intelligence untuk Memprediksi Harga Sewa Airbnb Menggunakan Metode Random Forest dan Penerapan Web Application Menggunakan Flask.

Rantetadung, M. (2012). Analisis Pengaruh dukungan pemerintah dan kunjungan wisatawan terhadap pendapatan asli daerah di Kabupaten Nabire. Jurnal Agroforensi, 7(1), 25-32.

Revindo, M. D., Sabrina, S., & Sowwam, M. (2020). Dampak pandemi COVID-19 terhadap pariwisata Indonesia: Tantangan, outlook dan respon kebijakan. Briefing Note April 2020. LPEM FEB UI.

Setiyawan, E. (2020). Pengembangan Aplikasi dan Peramalan Infaq Sadaqah Menggunakan Metode Double Exponential Smoothing. In Seminar Informatika Aplikatif Polinema (pp. 463-466).

Suchaina, S. (2014). Pengaruh Kualitas Fasilitas Sarana dan Prasarana terhadap Peningkatan Jumlah Pengunjung Wisata Danau Ranu Grati. Jurnal Psikologi: Jurnal Ilmiah Fakultas Psikologi Universitas Yudharta Pasuruan, 2(2), 89-109.

Sugiyono, (2015). Metode Penelitian Kombinasi (Mix Methods). Bandung: Alfabeta.

Walida, N., Wahyuningsih, S., & Amijaya, F. D. T. (2021). Pemilihan Parameter Optimum Menggunakan Exponential Smoothing dengan Metode Golden Section Untuk Peramalan Jumlah Titik Panas di Kalimantan Timur. Jambura Journal of Probability and Statistics, 2(2), 75-85.




DOI: https://doi.org/10.34312/jjps.v4i1.17088

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jambura Journal of Probability and Statistics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Editorial Office of Jambura Journal of Probability and Statistics:
 
Department of Statistics, 3rd Floor Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B.J Habibie, Tilongkabila Kabupaten Bone Bolango, 96119
Telp: +6285398740008 (Call/SMS/WA)
E-mail: redaksi.jjps@ung.ac.id