Implementasi Algoritma Random Forest dengan Forward Selection untuk Klasifikasi Indeks Pembangunan Manusia

Tiara Posangi, Lailany Yahya, Djihad Wungguli

Abstract


Development is essentially a process of continuous change carried out to achieve better living condition. So that the benchmark for the success of a development is seen in its human development. 3 The basic dimensions that form human development are long and healthy life, knowledge, and a decent life. The indicators that represent the three dimensions are summarized in a single value, namely the Human Development Index (IPM). In 2021 the HDI figure in Indonesia is 72.29, which means it is high. However, due to the diverse geographical location of regions in Indonesia, this also influences the HDI rate in each region in Indonesia, so this study uses the Random Forest Algorithm to obtain accurate results from the HDI classification and uses Forward Selection to determine features that influence the classification. The results of the study show that the features that influence the classification are per capita spending, expected length of schooling, life expectancy, and average length of schooling, and get a final accuracy of 80%.


Keywords


Indeks Pembangunan Manusia, Random Forest, Forward Selection

Full Text:

PDF

References


Badan Pusat Statistik (2014) Indeks Pembangunan Manusia 2013, Badan Pusat Statistik. Available at: https://www.bps.go.id/id/publication/2014/10/13/309e1d97d0691420ef1a0121/indeks-pembangunan-manusia-2013.html (Accessed: 15 January 2023).

Dewi, N., Yusuf, Y. and Iyan, R. Y. (2017) ‘Pengaruh Kemiskinan Dan Pertumbuhan Ekonomi Terhadap Indeks Pembangunan Manusia Di Provinsi Riau’, Jurnal Online Mahasiswa (JOM) Bidang Ilmu Ekonomi, 4(1).

Durand, F. and Valla, D. (2008) ‘Assessment of Prognosis of Cirrhosis’, Seminars in Liver Disease, 28(1), pp. 110–122. doi: 10.1055/s-2008-1040325.

Fajri, R. H. (2021) ‘Analisis Faktor-Faktor Yang Mempengaruhi Indeks Pembangunan Manusia Di Provinsi Riau’, ECOUNTBIS: Economics, Accounting and Business Journal, 1(1). Available at: https://jom.umri.ac.id/index.php/ecountbis/article/view/257.

Hasan, I. K., Resmawan, R. and Ibrahim, J. (2022) ‘Perbandingan K-Nearest Neighbor dan Random Forest dengan Seleksi Fitur Information Gain untuk Klasifikasi Lama Studi Mahasiswa’, Indonesian Journal of Applied Statistics, 5(1), p. 58. doi: 10.13057/ijas.v5i1.58056.

Mauludiyah, K. (2020) Klasifikasi Indeks Pembangunan Manusia Kabupaten/Kota di Indonesia Menggunakan Metode Random Forest. Universitas Muhammadiyah Semarang.

Nugroho, M. F. and Wibowo, S. (2017) ‘Fitur Seleksi Forward Selection Untuk Menetukan Atribut Yang Berpengaruh Pada Klasifikasi Kelulusan Mahasiswa Fakultas Ilmu Komputer UNAKI Semarang Menggunakan Algoritma Naive Bayes’, Jurnal Informatika Upgris, 3(1). doi: 10.26877/jiu.v3i1.1669.

Sandag, G. A. (2020) ‘Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest’, CogITo Smart Journal, 6(2), pp. 167–178. doi: 10.31154/cogito.v6i2.270.167-178.

Sasongko, T. B. (2016) ‘Komparasi dan Analisis Kinerja Model Algoritma SVM dan PSO-SVM (Studi Kasus Klasifikasi Jalur Minat SMA)’, Jurnal Teknik Informatika dan Sistem Informasi, 2(2).

Scornet, E., Biau, G. and Vert, J.-P. (2015) ‘Consistency of random forests’, The Annals of Statistics, 43(4). doi: 10.1214/15-AOS1321.

Septiana, R. D., Susanto, A. B. and Tukiyat, T. (2021) ‘Analisis Sentimen Vaksinasi Covid-19 Pada Twitter Menggunakan Naive Bayes Classifier Dengan Feature Selection Chi-Squared Statistic dan Particle Swarm Optimization’, Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan), 5(1), pp. 49–56. doi: 10.47970/siskom-kb.v5i1.228.

Supriyanti, W. and Puspitasari, N. (2018) ‘Implementasi Teknik Seleksi Fitur Forward Selection Pada Algoritma Klasifikasi Data Mining untuk Prediksi Masa Studi Mahasiswa Politeknik Indonusa Surakarta’, Jurnal INFORMA, 4(2).

Utomo, D. P. and Mesran, M.(2020) ‘Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Dataset Penyakit Jantung’, JURNAL MEDIA INFORMATIKA BUDIDARMA, 4(2), p. 437. doi: 10.30865/mib.v4i2.2080.

Zailani, A. U. and Hanun, N. L. (2020) ‘PENERAPAN ALGORITMA KLASIFIKASI RANDOM FOREST UNTUK PENENTUAN KELAYAKAN PEMBERIAN KREDIT DI KOPERASI MITRA SEJAHTERA’, Infotech: Journal of Technology Information, 6(1), pp. 7–14. doi: 10.37365/jti.v6i1.61.

Zeniarja, J., Widia, K. and Sani, R. R. (2020) ‘Penerapan Algoritma Naive Bayes dan Forward Selection dalam Pengklasifikasian Status Gizi Stunting pada Puskesmas Pandanaran Semarang’, JOINS (Journal of Information System), 5(1), pp. 1–9. doi: 10.33633/joins.v5i1.2745.




DOI: https://doi.org/10.37905/jjps.v4i2.18460

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jambura Journal of Probability and Statistics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Editorial Office of Jambura Journal of Probability and Statistics:
 
Department of Statistics, 3rd Floor Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B.J Habibie, Tilongkabila Kabupaten Bone Bolango, 96119
Telp: +6285398740008 (Call/SMS/WA)
E-mail: redaksi.jjps@ung.ac.id