K-Means Clustering dan Mean Variance Efficient Portfolio dalam Portofolio Saham

Yogi Pratama, Evy Sulistianingsih, Naomi Nessyana Debataraja, Nurfitri Imro’ah

Abstract


K-means clustering is one of the non-hierarchical clustering algorithms that partitions n objects into k clusters. K-means clustering is used to determine which cluster an object belongs to by calculating the proximity distance between the object and the cluster center (centroid). This research aims to form a portfolio using K-means clustering and determine the weights of the portfolio using the Mean Variance Efficient Portfolio (MVEP) method. The data analyzed in this research is the closing price data of 11 stocks in the LQ45 index from January 3, 2022, to January 3, 2023. The analysis results obtained using K-means clustering reveal the formation of two portfolios. The first portfolio consists of the stocks BMRI, INCO, INDF, INTP, and SMGR. The second portfolio consists of the stocks ADRO, ANTM, BBRI, ERAA, and UNVR. Based on the MVEP method calculation, the weights of each stock in the first portfolio are 22.74\% (BMRI), 10.11\% (INCO), 49.76\% (INDF), 18.75\% (INTP), and -1.36\% (SMGR). The calculation results of stock weights show that there is a stock weight with a negative value, which is -1.36\% for SMGR, indicating a short sale in the investment. Furthermore, the weighting results for the second portfolio are 7.08\% (ADRO), 9.62\% (ANTM), 34.05\% (BBRI), 24.80\% (ERAA), and 24.45\% (UNVR).The variance values of stock portfolio 1 and stock portfolio 2 are 0.000080 and 0.000137, respectively. From the portfolio variance results, it is known that the risk of portfolio 1 is 0.008953 and the risk of portfolio 2 is 0.011706.

Keywords


K-Means Clustering; Portfolio; Mean Variance Efficient Portfolio

Full Text:

PDF

References


Nalini, “Optimal portfolio construction using sharpe’s single index model-a study of selected stocks from bse,” International Journal of Advanced Research in Management and Social Sciences, vol. 3, no. 12, pp. 72–93, 2014.

Tandelilin.E, Portofolio dan Investasi: Teori dan Aplikasi. Edisi Pertama. Yogyakarta: Kanisius, 2010.

R. R. Margana, S. Artini, and L. Gede, “Pembentukan portofolio optimal menggunakan model indeks tunggal,” Ph.D. dissertation, Udayana University, 2017.

Hartono and Jogiyanto, Teori Portofolio dan Analisis Investasi. Edisi Kesembilan. Yogyakarta: BPFE, 2010.

D. Batuparan, “Bei news: Mengapa risk management? edisi 4,” 2000.

I. M. Di Asih and A. Purbowati, “Pengukuran value at risk pada aset Tunggal dan portofolio dengan simulasi monte carlo,” Media Statistika, vol. 2, no. 2, pp. 93–104, 2009.

I. Ayuningtias, N. N. Debataraja, and N. Imro’ah, “Analisis cluster non-hirarki dengan metode k-modes,” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 8, no. 4, 2019.

Gudono, Analisis Data Multivariat. Yogyakarta: BPFE, 2016.

V. Tola, F. Lillo, M. Gallegati, and R. N. Mantegna, “Cluster analysis for portfolio optimization,” Journal of Economic Dynamics and Control, vol. 32, no. 1, pp. 235–258, 2008.

F. Ren, Y.-N. Lu, S.-P. Li, X.-F. Jiang, L.-X. Zhong, and T. Qiu, “Dynamic portfolio strategy using clustering approach,” PloS one, vol. 12, no. 1, p. e0169299, 2017.

S. Nanda, B. Mahanty, and M. Tiwari, “Clustering indian stock market data for portfolio management,” Expert Systems with Applications, vol. 37, no. 12, pp. 8793–8798, 2010.

I. P. Sanggup, N. Satyahadewi et al., “Perhitungan nilai ekspektasi return dan risiko dari portofolio dengan menggunakan mean-variance efficient portfolio,” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 3, no. 01, 2014.

F. Nur, M. Zarlis, and B. B. Nasution, “Penerapan algoritma k-means pada siswa baru sekolah menengah kejuruan untuk clustering jurusan,” InfoTekJar: Jurnal Nasional Informatika dan Teknologi Jaringan, vol. 1, no. 2, pp. 100–105, 2017.

E. Muningsih and A. Yogyakarta, “Optimasi jumlah cluster k-means dengan metode elbow untuk pemetaan pelanggan,” Pros. Semin. Nas. ELINVO, pp. 105–114, 2017.

A. Aditya, I. Jovian, and B. N. Sari, “Implementasi k-means clustering ujian nasional sekolah menengah pertama di indonesia tahun 2018/2019,” Jurnal Media Informatika Budidarma, vol. 4, no. 1, pp. 51–58, 2020.

P. Larasati and T. Yuniati, “Analisis portofolio optimal model indeks Tunggal pada perusahaan perkebunan,” Jurnal Ilmu dan Riset Manajemen (JIRM), vol. 5, no. 3, 2016.

F. Fabozzi and M. Investasi, “Buku 1,” Jakarta: Salemba Empat, 1999.

A. V. Yolanda, N. Satyahadewi, and S. W. Rizki, “Analisis risiko portofolio

saham dengan metode varian-kovarian (studi kasus: Harga penutup saham mingguan dengan kode tlkm, hmsp dan inco periode 1 januari 2018-28 desember 2020),” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 11, no. 2.

B. Rusli, E. Sulistianingsih, and S. W. Rizki, “Analisis portofolio optimal pada index saham lq 45 dengan multi-index models,” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 7, no. 2, 2018.

H. Jogiyanto, “Teori portofolio dan analisis investasi, edisi ketiga,” Yogyakarta: BPFE-Yogyakarta, 2003.




DOI: https://doi.org/10.37905/jjps.v5i1.20298

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jambura Journal of Probability and Statistics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Editorial Office of Jambura Journal of Probability and Statistics:
 
Department of Statistics, 3rd Floor Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B.J Habibie, Tilongkabila Kabupaten Bone Bolango, 96119
Telp: +6285398740008 (Call/SMS/WA)
E-mail: redaksi.jjps@ung.ac.id