Faktor-Faktor Penentu Prevalensi Stunting di Nusa Tenggara Barat: Analisis Spasial dengan Modifikasi Ketetanggaan

Kartika Tri Nastiti, Zalfa Jihan Luthfi, Karimatul Ummah, Indira Ihnu Brilliant, Ezra Putranda Setiawan

Abstract


Stunting is one of the problems faced by the Indonesian population. In 2022, its prevalence in West Nusa Tenggara reached 18.5% and became the fourth highest in Indonesia. This study was conducted to identify the factors that can be used to explain the prevalence of stunting in West Nusa Tenggara using the spatial regression method.  Considering that this province consists of two separate islands, Queen's contiguity matrix was modified to consider the connections between the islands.  Based on the AIC values, the Spatial Durbin Model (SDM) becomes the best model for stunting prevalence. The research results show that the variables Human Development Index (HDI), ADHK Gross Regional Domestic Product, and the number of community health centers have a significant effect on the prevalence of stunting in West Nusa Tenggara. Of these three variables, the HDI variable has the greatest influence on reducing the prevalence of stunting in West Nusa Tenggara. The significance of the Spatial Durbin model shows that there is a spatial effect on the dependent and independent variables. 

Keywords


stunting; NTB; spasial; model durbin

Full Text:

PDF

References


I. R. Akolo, “Perbandingan matriks pembobot rook dan queen contiguity dalam analisis spatial autoregressive model (sar) dan spatial error model (sem),” Jambura Journal of Probability and Statistics, vol. 3, no. 1, pp. 11–18, 2022.

O. K. Asmoyo and V. Ratnasari, “Pemodelan faktor-faktor yang mempengaruhi persentase stunting pada balita di indonesia dengan pendekatan regresi data panel,” Jurnal Sains dan Seni ITS, vol. 11, no. 3, pp. D290–D297, 2022.

Y. Karyati, “Pengaruh jumlah penduduk miskin, laju pertumbuhan ekonomi, dan tingkat pendidikan terhadap jumlah stunting di 10 wilayah tertinggi indonesia tahun 2010-2019,” Jurnal Riset Ilmu Ekonomi Dan Bisnis, vol. 1, no. 2, pp. 101–108, 2021.

A. C. Pangaribuan, K. D. Dhanutama, M. O. Wijaya, P. T. Navasha, and R. Nooraeni, “Analisis determinan balita pendek dan sangat pendek di indonesia 2015-2018 dengan regresi data panel,” Jurnal Pendidikan Ekonomi (JUPE), vol. 8, no. 02, pp. 56–61, 2020.

W. D. Revildy, S. S. S. Lestari, and Y. Nalita, “Pemodelan spatial error model (sem) angka prevalensi balita pendek (stunting) di indonesia tahun 2018,” in Seminar Nasional Official Statistics, vol. 2020, no. 1, 2020, pp. 1224–1231.

A. Riznawati, D. Yudhistira, M. Rahmaniati, T. Sipahutar, and T. Eryando, “Autokorelasi spasial prevalensi stunting di jawa barat tahun 2021,” Jurnal Biostatistik, Kependudukan, Dan Informatika Kesehatan, vol. 3, no. 1, pp. 14–21, 2023.

L. S. Hasiru, I. Djakaria, and I. K. Hasan, “Penerapan model spasial durbin dengan uji lanjutan local indicator of spatial autocorrelation untuk melihat penyebaran stunting di kabupaten bone bolango,” Jambura Journal of Probability and Statistics, vol. 3, no. 1, pp. 19–28, 2022.

I. Setyawati, B. N. Handayani, and A. Supinganto, “Faktor risiko balita stunting di provinsi nusa tenggara barat,” JOMIS (Journal of Midwifery Science), vol. 6, no. 1, pp. 21–29, 2022.

B. N. Handayani and I. Setyawati, “Analisis faktor determinan stunting di nusa tenggara barat,” Jurnal Midwifery Update (MU), vol. 4, no. 2, pp. 83–92, 2022.

W. H. Yusuf, “Faktor resiko stunting di nusa tenggara barat (ntb) indonesia,” Indonesia Religion, Culture, and State Journal, vol. 2, no. 1, pp. 34–45, 2022.

V. S. Puspita and T. S. Yanti, “Penerapan analisis regresi spasial untuk menentukan faktor-faktor penyebab stunting di nusa tenggara barat tahun 2021,” in Bandung Conference Series: Statistics, vol. 2, no. 2, 2021, pp. 245–253.

M. H. Kutner, C. J. Nachtsheim, and J. Neter, Applied linear regression models, 4th ed. New York: McGraw-Hill Companies, Inc., 2004.

J. P. Lesage, The theory and practice of spatial econometrics. Department of Economics, University of Toledo., 1999.

L. Anselin, Spatial econometrics: methods and models. Springer Science & Business Media, 1988.

K. Suryowati, R. Bekti, R. Fajiriyah, and E. Siswoyo, “The effect of regional characteristics and relationship among locations in air pollution using spatial autoregressive (SAR) and spatial durbin models (SDM),” in Journal of Physics: Conference Series, vol. 1776, no. 1. IOP Publishing, 2021, p. 012051.

C. Mendez. (2020) Spatial regression analysis in r. [Online]. Available: https://rpubs.com/quarcs-lab/tutorial-spatial-regression

E. Pebesma and R. Bivand. (2005) Classes and methods for spatial data in r. [Online]. Available: https://CRAN.R-project.org/doc/Rnews/

R. Bivand, T. Keitt, B. Rowlingson, E. Pebesma, M. Sumner, and e. a. R. Hijmans. Bindings for the geospatial data abstraction library. [Online]. Available: https://cran.r-project.org/web/packages/rgdal/index.html

A. Syamsuadi, A. Febriani, E. Ermayani, B. Bunyamin, and N. Nursyiamah, “Peran lintas sektor dalam konvergensi percepatan penurunan stunting di kabupaten rokan hulu,” Jdp (Jurnal Dinamika Pemerintahan), vol. 6, no. 1, pp. 1–30, 2023.

D. Tampubolon, “Kebijakan intervensi penanganan stunting terintegrasi,” Jurnal Kebijakan Publik, vol. 11, no. 1, p. 25, 2020.

A. L. N. Raden and D. D. Pramaputri, “Analisis biplot atas kinerja pemerintah dalam penanganan stunting di indonesia,” Jurnal Anggaran dan Keuangan Negara Indonesia (AKURASI), vol. 3, no. 1, pp. 116–135, 2021.

N. Kusumawardhani and D. Martianto, “Kaitan antara prevalensi gizi buruk dengan pdrb per kapita dan tingkat kemiskinan serta estimasi kerugian ekonomi akibat gizi buruk pada balita di berbagai kabupaten/kota di pulau jawa dan bali,” Jurnal Gizi dan Pangan, vol. 6, no. 1, pp. 100–108, 2011.

M. E. Rahmuniyati, “Peran puskesmas dalam upaya mengurangi kasus stunting melalui program sanitasi total berbasis masyarakat (stbm),” in Prosiding Seminar Nasional Multidisiplin Ilmu, vol. 2, no. 1, 2020, pp. 511–517.




DOI: https://doi.org/10.37905/jjps.v6i1.24714

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jambura Journal of Probability and Statistics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Editorial Office of Jambura Journal of Probability and Statistics:
 
Department of Statistics, 3rd Floor Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B.J Habibie, Tilongkabila Kabupaten Bone Bolango, 96119
Telp: +6285398740008 (Call/SMS/WA)
E-mail: redaksi.jjps@ung.ac.id