Uji Aktivitas Antidiabetes Ekstrak Etil Asetat Daun Lamun (Enhalus acoroides) Pada Mencit (Mus musculus)
Abstract
Diabetes mellitus is a severe condition, chronic in nature, that occurs when there is an increase in blood glucose levels (GDS) 200 mg/dL or hyperglycemic conditions. Some plants are reported to have anti-diabetic effects. One of the examples is seagrass (Enhalus acoroides), which has α-glucosidase enzyme inhibitory effects in vitro. The community often uses it as traditional medicine. This present work explores the anti-diabetic activity of ethyl acetate extract of seagrass (Enhalus acoroides) leaves against male mice (Mus musculus) charged with 90% sucrose solution. It employed the oral sucrose tolerance test (OSTT) methodology. Activity tests on mice were carried out in five treatment groups, namely: group I or a negative control (Na-CMC 1% w/v); group II or a positive control (acarbose); group III (ethyl acetate extract dose 50 mg/kg BW); group IV ( ethyl acetate extract at a dose of 150 mg/kg BW), and; group V (ethyl acetate extract at a dose of 250 mg/kg BW). All data were analyzed by using a one-way ANOVA statistical test. The results show that the ethyl acetate extract of seagrass leaves can inhibit the absorption of sucrose, in which the most significant total inhibition occurred at a dose of 250 mg/kg BW, i.e., 68 mg/dL. A substantial inhibition was also found at a dose of 150 mg/kg BW, which was 82 mg/dL and at a dose of 50 mg/dL or 103 mg/dL. In conclusion, the ethyl acetate extract of seagrass leaves has anti-diabetic activity.
Keywords
Full Text:
PDFReferences
. IDF. (2019). IDF Diabetes Atlas (9th ed.). Belgium: International Diabetes federation
. IDF. (2021). IDF Diabetes Atlas (10th ed.). Belgium: International Diabetes federation
. Alam, S.; Hasan, M.K.; Neaz, S.; Hussain, N.; Hossain, M.F.; Rahman, T. (2021). Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management. Diabetology (2):36–50. https://doi.org/10.3390/diabetology2020004
. Pane, M., Rahman, A., & Ayudia, E. (2021). Gambaran Penggunaan Obat Herbal Pada Masyarakat Indonesia Dan Interaksinya Terhadap Obat Konvensional Tahun 2020. Journal of Medical Studies, 1(1), 40-62.
. Harsch, I. A., Kaestner, R. H., & Konturek, P. C. (2018). Hypoglycemic side effects of sulfonylureas and repaglinide in ageing patients-knowledge and self-management. Journal Physiol Pharmacol, 69(4), 647-9. https://doi.org/10.26402/jpp.2018.4.15
. DeFronzo, R., Fleming, G. A., Chen, K., & Bicsak, T. A. (2016). Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism, 65(2), 20-29. https://doi.org/10.1016/j.metabol.2015.10.014
. Nunes, A. P., Iglay, K., Radican, L., Engel, S. S., Yang, J., Doherty, M. C., & Dore, D. D. (2017). Hypoglycaemia seriousness and weight gain as determinants of cardiovascular disease outcomes among sulfonylurea users. Diabetes, Obesity and Metabolism, 19(10), 1425-1435. https://doi.org/10.1111/dom.13000
. Yosmar, R., Inanta, N. P., & Sari, Y. O. (2019). Studi Prospektif Adverse Drug Reactions (ADRS) Obat Hipoglikemik Oral Terhadap Pasien Diabetes Mellitus Tipe 2 di Suatu Rumah Sakit, Padang. Jurnal Sains Farmasi & Klinis, 5(3), 169-175. https://doi.org/10.25077/jsfk.5.3.169-175.2018
. Salehi, B., Ata, A., V Anil Kumar, N., et al. (2019). Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules, 9(10), 551. https://doi.org/10.3390/biom9100551
. Baehaki, A., Lestari, S., Hendri, M., & Ariska, F. (2020). Antidiabetic Activity with N-Hexane, Ethyl-Acetate and Ethanol Extract of Halodule uninervis Seagrass. Pharmacognosy Journal, 12(4): 805-8. https://doi.org/10.5530/pj.2020.12.115
. Amirah, N. F. (2019). Uji Aktivitas Antimikroba, Aktivitas Antioksidan Dan Skrining Fitokimia Ekstrak Enhalus acoroides Doctoral dissertation, Surabaya: Universitas Airlangga. http://repository.unair.ac.id/id/eprint/81980
. Nurafni, N., & Nur, R. M. (2018). Aktivitas Antifouling Senyawa Bioaktif Dari Lamun di Perairan Pulau Morotai. Jurnal Ilmu Kelautan Kepulauan, 1(2). http://dx.doi.org/10.33387/jikk.v1i2.942
. Qi SH, Zhang S, Qian PY, Wang BG. (2008). Antifeedant, antibacterial and antilarval compounds from the South China sea seagrass Enhalus acoroides. Bot Mar; 51: 441-7. https://doi.org/10.1515/BOT.2008.054
. Monisha, D., Sivasankar, V., Mylsamy, P., & Gabriel Paulraj, M. (2020). Mosquito larvicidal activity of Enhalus acoroides (L.f) royle and Halophila ovalis (Robr) hook. f. against the deadly vectors Aedes aegypti and Culex quinquefasciatus. South African Journal of Botany. https://doi.org/10.1016/j.sajb.2020.06.021
. Widiyanto A, Anwar E, Nurhayati T. (2018). In vitro Assay of Alpha-Glucosidase Inhibitor Activities of Three Seagrasses from Banten Bay, Indonesia. Pharmacog J.;10(5):907-10. https://doi.org/10.5530/pj.2018.5.152
. Senthilkumar, P., Santhosh Kumar, D. S., Sudhagar, B., Vanthana, M., Parveen, M. H., Sarathkumar, S., ... & Kannan, C. (2016). Seagrass-mediated silver nanoparticles synthesis by Enhalus acoroides and its α-glucosidase inhibitory activity from the Gulf of Mannar. Journal of Nanostructure in Chemistry, 6(3), 275-280. https://doi.org/10.1007/s40097-016-0200-7
. Hermawan, H., Sari, B. L., & Nashrianto, H. (2018). Kadar polifenol dan aktivitas antioksidan ekstrak etil asetat dan metanol buah ketapang (Terminalia catappa L.). Jurnal online mahasiswa (JOM) bidang farmasi, 1(1).
. Menajang, F., Mahmudi, M., Yanuhar, U., & Herawati, E. Y. (2019). Evaluation of phytochemical and superoxide dismutase activities of Enhalus acoroides (L.f.) Royle from coastal waters of North Sulawesi, Indonesia. Veterinary world, 13(4), 676–680. https://doi.org/10.14202/vetworld.2020.676-680
. Amudha, P., Vanitha, V., Bharathi, P. N., Jayalakshmi, M., & Mohanasundaram, S. (2017). Phytochemical analysis and in vitro antioxidant screening of seagrass Enhalus acoroides. Int. J. Res. Pharm. Sci, 8(2), 251-258.
. Wang, B., Zhao, J., Zhan, Q., Wang, R., Liu, B., Zhou, Y., & Xu, F. (2021). Acarbose for Postprandial Hypotension With Glucose Metabolism Disorders: A Systematic Review and Meta-Analysis. Frontiers in cardiovascular medicine, 8, 388. https://doi.org/10.3389/fcvm.2021.663635
. Brunton, Laurence L., Randa Hilal-Dandan., Björn C. Knollmann,. (2018). Goodman and Gilman's The Pharmacological Basis of Therapeutics Thirteenth Edition. New York: McGraw-Hill Education
. Katzung, Bertram G.(2018). Basic and Clinical Pharmacology Fourteenth Edition. New York: McGraw Hill Education
. Rodwell VW, Bender DA, Botham KM, Kennely PJ, and Weil PA. (2018). Harper’s Illustrated Biochemistry. 31th ed. New York: McGraw-Hill Education
. Yuniarto, A., & Selifiana, N. (2018). Aktivitas Inhibisi Enzim Alfa-glukosidase dari Ekstrak Rimpang Bangle (Zingiber cassumunar Roxb.) secara In vitro. MPI (Media Pharmaceutica Indonesiana), 2(1), 22-25. https://doi.org/10.24123/mpi.v2i1.1299
. Gao, F., Ma, X., Peng, J., Lu, J., Lu, W., Zhu, W., ... & Zhou, J. (2020). The effect of acarbose on glycemic variability in patients with type 2 diabetes mellitus using premixed insulin compared to metformin (AIM): an open-label randomized trial. Diabetes technology & therapeutics, 22(4), 256-264. https://doi.org/10.1089/dia.2019.0290
. Golan, D. E., Armstrong, E. J., & Armstrong, A. W. (2016). Principles of pharmacology: The pathophysiologic basis of drug therapy: Fourth edition. Wolters Kluwer Health.
. Dalsgaard, N. B., Gasbjerg, L. S., Hansen, L. S., Hansen, N. L., Stensen, S., Hartmann, B., ... & Knop, F. K. (2021). The role of GLP-1 in the postprandial effects of acarbose in type 2 diabetes. European Journal of Endocrinology, 184(3), 387-398. https://doi.org/10.1530/EJE-20-1121
. Zhang, J., & Guo, L. (2017). Effectiveness of acarbose in treating elderly patients with diabetes with postprandial hypotension. Journal of Investigative Medicine, 65(4), 772-783. http://dx.doi.org/10.1136/jim-2016-000295
. Fatmawati, Y., Sandrina, S., Aina, R. N., & Narulita, E. (2022). Molecular docking analysis of seagrass (Enhalus acoroides) phytochemical compounds as an antidiabetic. Journal of Biological Research-Bollettino della Società Italiana di Biologia Sperimentale. 95:10224. https://doi.org/10.4081/jbr.2022.10224
. Suprayogi, A., Rahminiwati, M., Satyaningtijas, A., Nugraha, A. T., Sukandar, D., Pangestika, H., & Pratiwi, L. (2020). Identification Of Compounds Flavonoids Namnam Leaf Extract (Cynometra Cauliflora) As Inhibiting A-Glucosidase. In Journal of Physics: Conference Series (Vol. 1594, No. 1, p. 012005). IOP Publishing. https://doi.org/10.1088/1742-6596/1594/1/012005
. Anggraini, A. (2020). Manfaat Antioksidan Daun Salam Terhadap Kadar Glukosa Darah Dan Penurunan Apoptosis Neuron Di Hippocampus Otak Tikus Yang Mengalami Diabetes. Jurnal Medika Hutama, 2(01), 349-355
. Supasuteekul, C., Nonthitipong, W., Tadtong, S., Likhitwitayawuid, K., Tengamnuay, P., & Sritularak, B. (2016). Antioxidant, DNA damage protective, neuroprotective, and α-glucosidase inhibitory activities of a flavonoid glycoside from leaves of Garcinia gracilis. Revista Brasileira de Farmacognosia, 26, 312-320. https://doi.org/10.1016/j.bjp.2016.01.007
. Do, N. H., Le, T. M., Nguyen, C. D., & Ha, A. C. (2020). Optimization of total flavonoid content of ethanolic extract of Persicaria pulchra (Bl.) Soják for the inhibition of α-glucosidase enzyme. Fine Chemical Technologies, 15(4), 39-50. https://doi.org/10.32362/2410-6593-2020-15-4-39-50
. Şöhretoğlu, D., & Sari, S. (2020). Flavonoids as alpha-glucosidase inhibitors: Mechanistic approaches merged with enzyme kinetics and molecular modelling. Phytochemistry Reviews, 19(5), 1081-1092. https://doi.org/10.1007/s11101-019-09610-6
. Hua, F., Zhou, P., Wu, H. Y., Chu, G. X., Xie, Z. W., & Bao, G. H. (2018). Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu'an GuaPian tea: molecular docking and interaction mechanism. Food & function, 9(8), 4173-4183. https://doi.org/10.1039/C8FO00562A
. Zhao, Y., Wang, M., & Huang, G. (2021). Structure-activity relationship and interaction mechanism of nine structurally similar flavonoids and α-amylase. Journal of Functional Foods, 86, 104739. https://doi.org/10.1016/j.jff.2021.104739
. Saidi, I., Manachou, M., Znati, M., Bouajila, J., & Jannet, H. B. (2022). Synthesis of new halogenated flavonoid-based isoxazoles: In vitro and in silico evaluation of a-amylase inhibitory potential, a SAR analysis and DFT studies. Journal of Molecular Structure, 1247, 131379. https://doi.org/10.1016/j.molstruc.2021.131379
. Ghorbani, A. (2017). Mechanisms of antidiabetic effects of flavonoid rutin. Biomedicine & Pharmacotherapy, 96, 305-312. https://doi.org/10.1016/j.biopha.2017.10.001
. Prasath, G. S., Pillai, S. I., & Subramanian, S. P. (2014). Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats. European journal of pharmacology, 740, 248-254. https://doi.org/10.1016/j.ejphar.2014.06.065
. Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K., & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430. https://doi.org/10.3390/biom9090430
. Yao, Z., Gu, Y., Zhang, Q., Liu, L., Meng, G., Wu, H., ... & Niu, K. (2019). Estimated daily quercetin intake and association with the prevalence of type 2 diabetes mellitus in Chinese adults. European journal of nutrition, 58(2), 819-830. https://doi.org/10.1007/s00394-018-1713-2
. M Eid, H., & S Haddad, P. (2017). The antidiabetic potential of quercetin: underlying mechanisms. Current medicinal chemistry, 24(4), 355-364. https://doi.org/10.2174/0929867323666160909153707
. Cirmi, S., Ferlazzo, N., Lombardo, G. E., Maugeri, A., Calapai, G., Gangemi, S., & Navarra, M. (2016). Chemopreventive agents and inhibitors of cancer hallmarks: may citrus offer new perspectives?. Nutrients, 8(11), 698. https://doi.org/10.3390/nu8110698
. Zang, Y., Igarashi, K., & Li, Y. (2016). Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-A y mice. Bioscience, Biotechnology, and Biochemistry, 80(8), 1580-1586. https://doi.org/10.1080/09168451.2015.1116928
. Yin, H., Huang, L., Ouyang, T., & Chen, L. (2018). Baicalein improves liver inflammation in diabetic db/db mice by regulating HMGB1/TLR4/NF-κB signaling pathway. International Immunopharmacology, 55, 55-62. https://doi.org/10.1016/j.intimp.2017.12.002
. Ma, L., Li, X. P., Ji, H. S., Liu, Y. F., & Li, E. Z. (2018). Baicalein protects rats with diabetic cardiomyopathy against oxidative stress and inflammation injury via phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Medical science monitor: international medical journal of experimental and clinical research, 24, 5368. https://doi.org/10.12659/MSM.911455
. Al-Dosari, D. I., Ahmed, M. M., Al-Rejaie, S. S., Alhomida, A. S., & Ola, M. S. (2017). Flavonoid naringenin attenuates oxidative stress, apoptosis and improves neurotrophic effects in the diabetic rat retina. Nutrients, 9(10), 1161. https://doi.org/10.3390/nu9101161
. Rahman, N., Muhammad, I., Khan, H., Aschner, M., Filosa, R., & Daglia, M. (2019). Molecular docking of isolated alkaloids for possible α-glucosidase inhibition. Biomolecules, 9(10), 544. https://doi.org/10.3390/biom9100544
. Goboza, M., Meyer, M., Aboua, Y. G., & Oguntibeju, O. O. (2020). In vitro antidiabetic and antioxidant effects of different extracts of Catharanthus roseus and its indole alkaloid, vindoline. Molecules, 25(23), 5546. https://doi.org/10.3390/molecules25235546
. Njoku, O. C., Airaodion, A. I., Awosanya, O., Ekenjoku, J. A., Okoroukwu, V. N., Ogbuagu, E. O., ... & Igwe, C. (2019). Antidiabetic potential of alkaloid extracts from Vitex doniana and Ficus thonningii leaves on alloxan-induced diabetic rats. International Research Journal of Gastroenterology and Hepatology, 2(2), 1-12.
. Larantukan, S. V. M., Setiasih, N. L. E., & Widyastuti, S. K. (2014). Pemberian ekstrak etanol kulit batang kelor glukosa darah tikus hiperglikemia. Indonesia Medicus Veterinus, 3(4), 292-299.
. Zhu, Y., Zhao, J., Luo, L., Gao, Y., Bao, H., Li, P., & Zhang, H. (2021). Research progress of indole compounds with potential antidiabetic activity. European Journal of Medicinal Chemistry, 223, 113665. https://doi.org/10.1016/j.ejmech.2021.113665
. Abd El Hafez, M. S., Aziz Okbah, M. A. E., Ibrahim, H. A., Hussein, A. A. E. R., El Moneim, N. A. A., & Ata, A. (2021). First report of steroid derivatives isolated from starfish Acanthaster planci with anti-bacterial, anti-cancer and anti-diabetic activities. Natural Product Research, 1-8. https://doi.org/10.1080/14786419.2021.2021200
. Junejo, J. A., Zaman, K., Rudrapal, M., Celik, I., & Attah, E. I. (2021). Antidiabetic bioactive compounds from Tetrastigma angustifolia (Roxb.) Deb and Oxalis debilis Kunth.: Validation of ethnomedicinal claim by in vitro and in silico studies. South African Journal of Botany, 143, 164-175. https://doi.org/10.1016/j.sajb.2021.07.023
. Daisy, P., Jasmine, R., Ignacimuthu, S., & Murugan, E. (2009). A novel Steroid from Elephantopus scaber L. an Ethnomedicinal plant with antidiabetic activity. Phytomedicine, 16(2-3), 252–257. https://doi.org/10.1016/j.phymed.2008.06.001
. Kumari, M., & Jain, S. (2012). Tannins: An antinutrient with positive effect to manage diabetes. Research Journal of Recent Sciences. 1(12), 1-8
. Kato, C. G., Gonçalves, G. D. A., Peralta, R. A., Seixas, F. A. V., de Sá-Nakanishi, A. B., Bracht, L., ... & Peralta, R. M. (2017). Inhibition of α-amylases by condensed and hydrolysable tannins: Focus on kinetics and hypoglycemic actions. Enzyme Research, 2017:1-12. https://doi.org/10.1155/2017/5724902
DOI: https://doi.org/10.37311/jsscr.v4i1.15379
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Journal Syifa Sciences and Clinical Research
EDITORIAL OFFICE OFÂ JOURNAL SYIFA SCIENCES AND CLINICAL RESEARCH |
  | Department of Pharmacy, Gorontalo State University Jl. Jenderal Sudirman No.6, Kota Gorontalo, Provinsi Gorontalo 96128, Indonesia |
 | Email: info.jsscr@ung.ac.id Google Scholar : JOURNAL SYIFA SCIENCES AND CLINICAL RESEARCH |