Cover Image

Sifat Lubang Hitam Schwarzschild-de Sitter dalam Background Semesta yang Berekspansi Dipercepat

Muh Fachrul Latief

Abstract


In this paper has reviewed about the physical of Schwarzschild-de Sitter black hole in the background an accelerated expansion of universe. The physical properties. The physical properties discussed are cosmic effects on the Schwarzschild-de Sitter black hole such as its mass, temperature and horizon radius. First, the formulation of the Einstein field equations is carried out by adding the cosmological constant and the cosmic scale factor as the conformal factor of the Schwarzschild-de Sitter metric to investigate local spacetime in asymptotic time periods as a homogeneous and istropic FRW metric. In addition, it has been discussed and investigated specifically for the temperature expression which is a function of the cosmological constant and used in determining the Hawking radiation spectrum. The temperature is approached at the critical point of the cosmological constant Λ [0,1] to determine the characteristics of the temperature in an asymptotic state. The results show that by applying the Ricci scalar, the solution of Einstein’s gravitaional which time-dependent and spherical-symmetry can be described against in the background of a unified accelerated expansion of the universe. Likewise, a generalization of the cosmological horizon, particle trajectories, and temperature of the Schwarzschild-de Sitter black hole is obtained which is in harmony with the background of the accelerated expansion of the universe.

Keywords


Schwarzschild-de Sitter black hole; Einstein’s field equation; Ricci’s scalar; Cosmological constant;

Full Text:

PDF

References


S. W. Hawking and W. Israel (eds.), Three Hundred Years of Gravitation (Cambridge University Press, 1987).

K. S. Thorne, R. H. Price and A. MacDonald, Black Holes: The Membrane Paradigm (Yale University Press, New Haven, 1976).

Einstein, A. (1923). "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie". Das Relativitätsprinzip, : 130–139.

Rugh, S; Zinkernagel, H. (2001). "The Quantum Vacuum and the Cosmological Constant Problem". Studies in History and Philosophy of Modern Physics. 33 (4): 663–705. arXiv:hep-th/0012253.

A. I. Lonappan, S. Kumar, Ruchika, A. A. Sen. (2017). “Bayesian Evidences for dark energy models in light of current observational data”. Physical Review D. 97 (4) : 043524. arXiv:1707.00603.

A. G. Lemaitre, A. S. Eddington. (1931). “The Expanding Universe”. Monthly Notices of the Royal Astronomical Society. 91 (5) : 490–501.

E. Hubble. (1929). “A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae”. Proc. Nat. Acad. Sci. 15 : 168-173

S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of relativity (J. Wiley & Sons, New York 1972).

E. Harrison, Cosmology : The Science of Universe 2nd edition (Cambridge University Press, 2012).

E. Harrison. (1993). “The Redshift-Distance and Velocity-Distance Laws”. Astrophys. J. 403 : 28-31.

L. D. Landau and E. M. Lifshitz, The classical theory of fields (Elsevier Sci. Inc., New York 1975).

T. R. Choudhury and T. Padmanbahan. (2007). Concept of temperaure in multi-horizons spacetimes. Gen. Relativ. Grav. 39 : 1789-1811.

S. Weinberg, Cosmology. (Oxford University Press Inc., New York, 2008).

T. Padmanabhan. (2002). ”Classical and Quantum Thermodynamics of Horizons in Spherical Symmetry Spacetimes”. Class. Quantum Grav. 9 : 5387-5409

T. Padmanabhan. (2005). “Gravity and the Thermodynamics of Horizons”. Phys. Rep. 406 : 49.

A. Riess et al., (1998). “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant”. Astron. J. 116 : 1009.

S. J. Perlmutter et al., (1999). “Measurements of Omega and Lambda from 42 High-Redshift Supernovae”. Astrophys. J. 517 : 565.

W. Zimdahl, D. J. Schwarz, A. B. Balakin and D. Pavon, .(2001). “Cosmic anti-friction and accelerated expansion”. Phys. Rev. D 64. 063501.

G. Bene, V. Czinner and M. Vasth, (2006). “Accelerating expansion of the universe may be caused by inhomogeneities”. Mod. Phys. Lett. A 21 : 1117.

K. Enqvist, (2008). “Lemaitre–Tolman–Bondi model and accelerating expansion”. Gen. Relativ. Gravit. 40 : 451–466.

A. Sheykhi, B. Wang and R. G. Cai, (2007). “Thermodynamical properties of apparent horizon in warped DGP braneworld”. Nucl. Phys. B 779 : 1-12.

A. Sheykhi, B. Wang and R. G. Cai, (2007). “Deep connection between thermodynamics and gravity in Gauss-Bonnet braneworlds”. Phys. Rev. D 76, 023515.

A. Sheykhi, J. Cosmol. (2009). “Thermodynamical interpretation of gravity in braneworld scenarios”. Astropart. Phys. 05 : 019.

R. C. Tolman, (1934). “On Thermodynamics Equilibrium in a Static Einstein Universe”. Proc. Nat. Acad. Sci. USA 20 : 410.

A. H. Abbassi, and S. Khosravi, (2010). “On Kerr-de Sitter Metric”. Int. J. Mod. Phys. A 25 : 837.

J. T. Firouzjaee, (2012). “The Sperical Symmetry Black Hole Collapse in Expanding Universe”. Int. J. Mod. Phys. D 21, 1250039.

F. Kottler, (1918). “Uber die Physikalischen Grundlagen der Eisntenchen Gravitationstheorie”. Ann. Phys. 56 : 401.

H. Weyl, (1919). “Eine neue Erweiterung der Relativitätstheorie”. Phys. Z. 20 : 31.

E. Trefftz, (1922). “Das statische Gravitationsfeld zweier Massenpunkte in der Einsteinschen Theorie”. Math. Ann. 86 : 317.

B. C. Nolan, (1999). “A point mass in an isotropic universe: III. The region R ≤ 2 m”. Class. Quantum Grav. 16 : 1227.

M. Iihoshi, S. V. Ketov and A. Morishita, (2007). “CONFORMALLY FLAT FRW METRICS”. Prog. Theor. Phys. 118 : 475.

N. Riazi, H. Moradpour and A. Amiri, (2011). “Physical and Mathematical Properties of Conformally RW Spacetimes”. Prog. Theor. Phys. 126 : 1145

V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005).

M. Visser, Lorentzian Wormholes: From Einstein to Hawking (American Institute of Physics, New York, 1995).

J. L. Tonry et al., (2003) . “Cosmological Results From High-Z Supernovae”. Astrophys. J. 594 : 1.

U. Alam, V. Sahni, T. D. Saini and A. A. Starobinsky, (2004). “Is There Supernova evidence for dark energy metamorphosis?” Mon. Not. R. Astron. Soc. 354 : 275.

T. R. Choudhury and T. Padmanabhan, (2005). “Cosmological parameters from supernova observations: A critical comparison of three data sets”. Astron. Astrophys. 429 : 807

J. S. Alcaniz, (2004). “Testing dark energy beyond the cosmological constant barrier”. Phys. Rev. D 69, 083521.

G.W. Gibbons, S.W. Hawking, (1977). “Cosmological event horizons, thermodynamics, and particle creation”. Phys. Rev. D 15 : 2738.

R. Bousso, S.W. Hawking, (1996). “Pair Creation of Black Hole during inflation”. Phys. Rev. D 54 : 6312

Y. Sekiwa, (2006). “Thermodynamics of de SItter black holes - Thermal Cosmological Constant”. Phys. Rev. D 73, 084009.

M. Urano, A. Tomimatsu, H. Saida, (2009). Mechanical First Law of Black Hole Spacetimes with Cosmological Constant and Its Application to Schwarzschild-de Sitter Spacetime”. Class. Quantum Gravity 26, 105010.

V. Iyer, R.M. Wald, (1994). “Some properties of the Noether charge and a proposal for dynamical black hole entropy”. Phys. Rev. D 50 : 846.

J. Labbe, A. Barrau, J. Grain, (2006). ” Phenomenology of black hole evaporation with a cosmological constant”. PoS HEP 2005 : 013.




DOI: https://doi.org/10.34312/ljpa.v1i2.21833

Copyright (c) 2023

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.