Deep Brain Stimulation for Alzheimer’s Disease: A Review of a Potential Treatment in Neurosurgery

Kharisma Ridho Husodo, Chintya Nur Fa'izah

Abstract


Background: Alzheimer’s disease (AD) is still a disease with abundant enigma. Moreover, the prevalence of AD increases every year by about 10 million new cases. This disease is well known for its degenerative feature with age being the most influencing factor. Pathophysiologically, the deposition of beta-amyloid and tau proteins is the culprit for disrupting the neural connections in the brains of AD patients. Some studies have stated that drug medications are not effective in treating AD patients.

Content: Currently, there is no drug to cure the disease. In conditions in which drugs fail to take effect, there is a therapy called deep brain stimulation (DBS), which allows the brain to be stimulated electrically using electrodes that are implanted into certain brain areas as targets. In AD patients, the nucleus basalis of meynert (NBM) and fornix are frequently selected as targets in DBS. This intervention is performed surgically by the neurosurgeon. Several potential mechanisms of this treatment include controlling connections among neurons, decreasing beta-amyloid and tau protein levels, and inhibiting the inflammation process in the brain.

Conclusion: DBS can improve AD patients, both clinically and molecularly. Despite the promising effects of DBS, this treatment has limitations, so it cannot be applied to every patient with AD.

Full Text:

PDF

References


World Health Organization. 2018. Dementia: Fact Sheets. https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed 1 September 2023

Alzheimer’s Disesase International. 2015. World Alzheimer’s Report 2015. https://www.alz.co.uk/research/world-report-2015. Accessed 1 September 2023.

Breijyeh, Z., & Karaman, R. 2020. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules (Basel, Switzerland), 25(24), 5789. https://doi.org/10.3390/molecules25245789

Knopman, D.S., Amieva, H., Petersen, R.C., Chetelat, G., Holtzman, D.M., Hyman, B.T., Nixon, R.A., Jones, D.T. 2021. Alzheimer disease. Nat Rev Dis Primers 7, 33. https://doi.org/10.1038/s41572-021-00269-y

Cummings, J. L., Morstorf, T., and Zhong, K. 2014. Alzheimer's disease drug-development pipeline: few candidates, frequent failures. Alzheimers. Res. Ther. 6:37. doi: 10.1186/alzrt269

Luo Y, Sun Y, Tian X, Zheng X, Wang X, Li W, Wu X, Shu B and Hou W. 2021. Deep Brain Stimulation for Alzheimer's Disease : Stimulation Parameters and Potential Mechanisms of Action. Front. Aging Neurosci. 13:619543. doi: 10.3389/fnagi.2021.619543

Kumar, A., Sidhu, J., Goyal, A., Tsao, J.W. Alzheimer Disease. [Updated 2022 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; Available from: https://www.ncbi.nlm.nih.gov/books/NBK499922/. Accessed 2 September 2023

DeTure, M.A., Dickson, D.W. 2019. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegeneration 14, 32 (2019). https://doi.org/10.1186/s13024-019-0333-5

Wiersma, V.I., Van Ziel, A.M., Vazquez-Sanchez, S. Nolle, A., Barrenjeno-Correa, C., Bonaterra-Pastra, A., Clavaguera, F., Tolnay, M., Musters, R.J.P., Van Weeing, J.R.T., Verhage, M., Hoozemans, J.J.M., Scheper, W. 2019. Granulovacuolar degeneration bodies are neuron-selective lysosomal structures induced by intracellular tau pathology. Acta Neuropathol 138, 943–970 (2019). https://doi.org/10.1007/s00401-019-02046-4

Breijyeh, Z. Karaman, R. 2020. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. https://doi.org/10.3390/molecules25245789

Mielke, M.M. 2018. Sex and Gender Differences in Alzheimer's Disease Dementia. The Psychiatric times, 35(11), 14–17.

Silva, M.V.F., Loures, C.D.M.G., Alves, L.C.V., Souza, L.C.D., Borges, K.B.G. & Carvalho, M.D.G. 2019. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci 26, 33. https://doi.org/10.1186/s12929-019-0524-y

Dubois, B., Villain, N., Frisoni, G. B., Rabinovici, G. D., Sabbagh, M., Cappa, S., Bejanin, A., Bombois, S., Epelbaum, S., Teichmann, M., Habert, M., Nordberg, A., Blennow, K., Galasko, D., Stern, Y., Rowe, C.C., Salloway, S., Schneider, L.S., Cummings, J.L & Feldman, H. H. 2021. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. The Lancet Neurology, 20(6), 484–496. doi:10.1016/s1474-4422(21)00066-1

Cummings, J. 2019. The National Institute on Aging—Alzheimer's Association Framework on Alzheimer's disease: Application to clinical trials. Alzheimer's & Dementia Vol 15, Issue 1, January 2019, Pages 172-178

Lee, J.C., Kim, S.J., Hong, S. & Kim, Y. 2019. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Exp Mol Med 51, 1–10 (2019). https://doi.org/10.1038/s12276-019-0250-2

Briggs, R., Kennelly, S.P. & O'Neil, D. 2016. Drug treatments in Alzheimer’s disease. Clinical Medicine Journal, Jun 2016, 16 (3) 247-253; DOI: 10.7861/clinmedicine.16-3-247

Wischik, C.M., Harrington, C.R., Storey, J.M. 2014. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem Pharmacol; 88 :529–39.

Sharma, K. 2019. Cholinesterase inhibitors as Alzheimer's therapeutics (Review) . Molecular Medicine Reports, 20, 1479-1487. https://doi.org/10.3892/ mmr.2019.10374

McShane, R., Westby, M.J., Robberts, E., Minakaran, N., Schneider, L., Farrimond, L.E., Maayan, N., Ware, J., Debarros, J. 2019. Memantine for Dementia. Cochrane Database of Systematic Reviews 2019, Issue 3. Art. No.: CD003154. DOI: 10.1002/14651858.CD003154.pub6.

Cummings, J. 2023. Anti-Amyloid Monoclonal Antibodies are Transformative Treatments that Redefine Alzheimer's Disease Therapeutics. Drugs 83, 569–576. https://doi.org/10.1007/s40265-023-01858-9

Lv, Q., Du, A., Wei, W., Li, Y., Liu, G., & Wang, X. P. 2018. Deep Brain Stimulation: A Potential Treatment for Dementia in Alzheimer's Disease (AD) and Parkinson's Disease Dementia (PDD). Frontiers in neuroscience, 12, 360. https://doi.org/10.3389/fnins.2018.00360

Chang, C. H., Lane, H. Y., & Lin, C. H. 2018. Brain Stimulation in Alzheimer's Disease. Frontiers in psychiatry, 9, 201. https://doi.org/10.3389/fpsyt.2018.00201

Cimpianu, C.L, Strube, W., Falkai, P., Palm, U., Hasan, A. 2017. Vagus nerve stimulation in psychiatry: a systematic review of the available evidence. J Neural Transm. 2017 124:145–58. 10.1007/s00702-016-1642-2

Kuhn, J., Hardenacke, K., Shubina, E., Lenartz, D., Visser-Vandewalle, V., Zilles, K. 2015b. Deep brain stimulation of the nucleus basalis of Meynert in early stage of Alzheimer's dementia. Brain Stimul. 8, 838–839. doi: 10.1016/j.brs.2015.04.002

Chen, Y. S., Shu, K., & Kang, H. C. 2021. Deep Brain Stimulation in Alzheimer's Disease: Targeting the Nucleus Basalis of Meynert. Journal of Alzheimer's disease : JAD, 80(1), 53–70. https://doi.org/10.3233/JAD-201141

Sankar, T., Chakravarty, M. M., Bescos, A., Lara, M., Obuchi, T., Laxton, A. W., McAndrews, M. P., Tang-Wai, D. F., Workman, C. I., Smith, G. S., & Lozano, A. M. 2015. Deep Brain Stimulation Influences Brain Structure in Alzheimer's Disease. Brain stimulation, 8(3), 645–654. https://doi.org/10.1016/j.brs.2014.11.020

Lozano, A. M., Fosdick, L., Chakravarty, M. M., Leoutsakos, J. M., Munro, C., Oh, E., Drake, K. E., Lyman, C. H., Rosenberg, P. B., Anderson, W. S., Tang-Wai, D. F., Pendergrass, J. C., Salloway, S., Asaad, W. F., Ponce, F. A., Burke, A., Sabbagh, M., Wolk, D. A., Baltuch, G., Okun, M. S., & Smith, G. S. 2016. A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer's Disease. Journal of Alzheimer's disease : JAD, 54(2), 777–787. https://doi.org/10.3233/JAD-160017

Hescham, S., Lim, L. W., Jahanshahi, A., Steinbusch, H. W., Prickaerts, J., Blokland, A., & Temel, Y. 2013. Deep brain stimulation of the forniceal area enhances memory functions in experimental dementia: the role of stimulation parameters. Brain stimulation, 6(1), 72–77. https://doi.org/10.1016/j.brs.2012.01.008

Leplus, A., Lauritzen, I., Melon, C., Kerkerian-Le Goff, L., Fontaine, D., & Checler, F. 2019. Chronic fornix deep brain stimulation in a transgenic Alzheimer's rat model reduces amyloid burden, inflammation, and neuronal loss. Brain structure & function, 224(1), 363–372. https://doi.org/10.1007/s00429-018-1779-x

Pycroft, L., Stein, J., & Aziz, T. 2018. Deep brain stimulation: An overview of history, methods, and future developments. Brain and neuroscience advances, 2, 2398212818816017. https://doi.org/10.1177/2398212818816017

Fariba, K.A., Gupta, V. 2023. Deep Brain Stimulation. [Updated 24 July 2023]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK557847, accessed 5 September 2023

Ho, A.L., Ali, R., Connolly, I.D., Henderson, J.M., Dhall, R., Stein, S.C., Halpern, C.H. 2018. Awake versus Asleep Deep Brain Stimulation for Parkinson’s Disease: A Critical Comparison and Meta-analysis. Journal of Neurology, Neurosurgery & Psychiatry, Vol 89 : 6870-691

Huang, C., Chu, H., Ma, Y., Zhou, Z., Dai, C., Huang, X., et al. 2019. The neuroprotective effect of deep brain stimulation at nucleus basalis of Meynert in transgenic mice with Alzheimer's disease. Brain Stimul. 12, 161–174. doi: 10.1016/j.brs.2018.08.015

Gallino, D., Devenyi, G. A., Germann, J., Guma, E., Anastassiadis, C., and Chakravarty, M. M. 2019. Longitudinal assessment of the neuroanatomical consequences of deep brain stimulation: application of fornical DBS in an Alzheimer's mouse model. Brain Res. 1715, 213–223. doi: 10.1016/j.brainres.2019.03.030

Mann, A., Gondard, E., Tampellini, D., Milsted, J. A. T., Marillac, D., Hamani, C., et al. 2018. Chronic deep brain stimulation in an Alzheimer's disease mouse model enhances memory and reduces pathological hallmarks. Brain Stimul. 11, 435–444. doi: 10.1016/j.brs.2017.11.012

Herrington, T. M., Cheng, J. J., & Eskandar, E. N. 2016. Mechanisms of deep brain stimulation. Journal of neurophysiology, 115(1), 19–38. https://doi.org/10.1152/jn.00281.2015

Jung, I., Chang, K.W., Park, S.H., Chang, W.S., Jung, H.H., Chang, J.W. 2022. Complications After Deep Brain Stimulation: A 21-Year Experience in 426 Patients. Front. Aging Neurosci., Volume 14. https://doi.org/10.3389/fnagi.2022.819730




DOI: https://doi.org/10.37905/jmhsj.v3i1.23340

Refbacks

  • There are currently no refbacks.


Jambura Medical and Health Science Journal (JMHSJ) has been indexed by:



Editorial Office

Faculty of Medicine, Universitas Negeri Gorontalo
Medical Faculty Building, 1st Floor
Jl. Jend. Sudirman No.6, Kota Gorontalo, Gorontalo, 96128, Indonesia.Whatsapp: +6285233215280 Email: jmhsj@ung.ac.id

 

Creative Commons Licence
Jambura Medical and Health Science Journal (JMHSJ), is licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional.