Spatial Analysis Model For Landslide Detection Using Relative Different NDVI (rdNDVI) Method Thought The Google Earth Engine Platform (Case Study: Sukajaya District, Bogor Regency)

Muarief Ahlun Nazar, Erwin Hermawan, Iksal Yanuarsyah

Abstract


This research utilizes the Google Earth Engine platform to detect landslides with relatively different NDVI (rdNDVI) methods. The purpose of the research is to improve our understanding of landslide analysis and detection, particularly those that occurred in Sukajaya district, Bogor Regency, Indonesia, on January 1, 2020. This research identifies vegetation changes associated with landslide likelihood using Sentinel-2A satellite image data available on Google Earth Engine. The results show that the rdNDVI method is effective in detecting landslides and can be used to determine areas that may be affected by landslides. This research also evaluates the accuracy of landslide detection by determining the threshold value to determine which areas are affected by landslides, by applying different slope values, the slopes used are slope 10, 15, 20, and 25. Comparing each slope results in a slope of 10 percent and a slope of 15 percent with 90% accuracy making the best accuracy compared to other slopes. The results of this research are expected to help the Regional Disaster Management Agency (BPBD) of Bogor Regency in managing landslides by conducting a careful and accurate analysis of areas that may be affected by landslides.

Keywords


Landslide; Vegetation, Hazard; Google Earth Engine; rdNDVI Method

Full Text:

PDF

References


Adi, A. W., Shalih, O., Shabrina, F. Z., Rizqi, A., Putra, A. S., Karimah, R., Eveline, F., Alfian, A., Syauqi, Septian, R. T., Widiastomo, Y., Bagaskoro, Y., Dewi, A. N., Rahmawati, I., & Seniarwan. (2022). Indeks Risiko Bencana Indonesia Tahun 2021. 11–13.

Badan Nasional Penanggulangan Bencana. (2016). Disasters Risk of Indonesia. International Journal of Disaster Risk Science, 22. https://doi.org/10.1007/s13753-018-0186-5

BPBD Kabupaten Bogor. (2021). Tanah Longsor terjadi di Kecamatan Sukajaya Kabupaten Bogor. https://bpbd.bogorkab.go.id/tanah-longsor-terjadi-di-kecamatan-sukajaya-kabupaten-bogor/

Dahigamuwa, T., Yu, Q., & Gunaratne, M. (2016). Feasibility study of land cover classification based on normalized difference vegetation index for landslide risk assessment. Geosciences (Switzerland), 6(4), 1–14. https://doi.org/10.3390/geosciences6040045

Ghorbani, A., Mossivand, A. M., & Ouri, A. E. (2012). Utility of the Normalised Difference Vegetation Index (NDVI) for land/canopy cover mapping in Khalkhal County (Iran). Scholars Research Library Annals of Biological Research, 2012(12), 5494–5503.

Ghorbanzadeh, O., Shahabi, H., & Crivellari, A. (2022). Landslide detection using deep learning and object ‑ based image analysis. Landslides, December 2021, 929–939. https://doi.org/10.1007/s10346-021-01843-x

Lasaponara, R., Abate, N., Fattore, C., Aromando, A., Cardettini, G., & Di Fonzo, M. (2022). On the Use of Sentinel-2 NDVI Time Series and Google Earth Engine to Detect Land-Use/Land-Cover Changes in Fire-Affected Areas. Remote Sensing, 14(19). https://doi.org/10.3390/rs14194723

Liu, Y., Deng, Z., & Wang, X. (2021). The effects of rainfall, soil type and slope on the processes and mechanisms of rainfall-induced shallow landslides. Applied Sciences (Switzerland), 11(24). https://doi.org/10.3390/app112411652

Mazzanti, P., & Romeo, S. (2023). Introduction to a Thematic Set of Papers on Remote Sensing for Natural Hazards Assessment and Control. Remote Sensing, 15(4), 1–7. https://doi.org/10.3390/rs15041048

Mutanga, O., & Kumar, L. (2019). Google Earth Engine Applications. In O. Kumar, Lalit dan Mutanga (Ed.), Remote Sensing (Special Is, Vol. 11, Issue 5). https://doi.org/10.3390/rs11050591

Notti, D., Cignetti, M., Godone, D., & Giordan, D. (2022). Semi-automatic mapping of shallow landslides using free Sentinel-2 and Google Earth Engine. July, 1–34.

Prasetya, H. N. E., Aditama, T., Sastrawiguna, G. I., Rizqi, A. F., &

Zamroni, A. (2021). Analytical landslides prone area by using Sentinel-2 Satellite Imagery and geological data in Google Earth Engine (a case study of Cinomati Street, Bantul Regency, Daerah Istimewa Yogyakarta Province, Indonesia). IOP Conference Series: Earth and Environmental Science, 782(2). https://doi.org/10.1088/1755-1315/782/2/022025

Sajadi, P., Sang, Y. F., Gholamnia, M., Bonafoni, S., Brocca, L., Pradhan, B., & Singh, A. (2021). Performance evaluation of long ndvi timeseries from avhrr, modis and landsat sensors over landslide-prone locations in qinghai-tibetan plateau. Remote Sensing, 13(16), 1–27. https://doi.org/10.3390/rs13163172

Scheip, C. M., & Wegmann, K. W. (2021). HazMapper : a global open-source natural hazard mapping application in Google Earth Engine. 1495–1511.

Tanesab, F. I., Dethan J.J.S, & Selan, W. (2023). Pemetaan Daerah Rawan Longsor Di Wilayah Kota Kupang Berbasis Geographic Information System (GIS). Journal Of Computer Science And Technology (JOCSTEC), 1(1), 35–40. https://doi.org/10.59435/jocstec.v1i1.16

Tjahjadi, M. E., Sai, S. S., & Purwanto, H. (2015). Sistem Peringatan Dini Pemantauan Tanah Longsor Berbasis Teknologi Vision dan Geomatika. 1070–1080.

Wen, T. H., & Teo, T. A. (2022). Landslide inventory mapping from landsat-8 ndvi time series using adaptive landslide interval detection. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(3), 557–562. https://doi.org/10.5194/isprs-Annals-V-3-2022-557-2022

Wibowo, I. S. (2019). Sistem Peringatan Dini Bencana Longsor Menggunakan Sensor Accelerometer dan Sensor Soil Moisture Berbasis Android. 164–169.




DOI: https://doi.org/10.37905/jgeosrev.v6i2.23962



Copyright (c) 2024 Muarief Ahlun Nazar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.