Impacts of Land Use on Runoff and Sediment Dynamics in Tropical Watersheds: A Case Study in Bogowonto Upper Watershed

Nugroho Christanto, Muhammad Anggri Setiawan, Afid Nur Kholis, Rahit Sharma, Dhruba Pika Shrestha

Abstract


Land use changes in tropical regions have increased, leading to rising environmental stress in Java, Indonesia. Food shortages have driven land conversion and expansion, which increases peak flows during the rainy season and reduces water storage in the dry season, heightening flood risks. Research on integrated catchment hydrology is crucial. This study examines the relationship between land use, runoff, and sediment in the Bogowonto Upper Watershed using SWAT hydrological modeling. The SWAT model helps understand hydrological processes at the watershed scale and the impact of land use changes on runoff and sediment dynamics. The sensitivity of SWAT model parameters varies in the Bogowonto Upper Watershed. Runoff sensitivity analysis indicates a +62% increase with a 50% change in CN value, showing high sensitivity. A 50% change in vegetation cover results in a +50% model output, indicating moderate sensitivity. Slope, Ksat (saturated hydraulic conductivity), and bulk density are fairly sensitive, while AWC is slightly sensitive. For sediment, a 50% increase in CN value results in a +47% change, and a 50% increase in vegetation cover leads to a +58% model output, showing moderate sensitivity. The model, run from 2014-2019, shows excellent accuracy with NSE of 0.82, RRMSE of 0.43, R² of 0.83, and PBIAS of 9.8%.

Keywords


Land use; runoff; sediment dynamic; SWAT; Hydrological Model; Bogowonto

Full Text:

PDF

References


Abbaszadeh, M., Bazrafshan, O., Mahdavi, R., Sardooi, E. R., & Jamshidi, S. (2023). Modeling Future Hydrological Characteristics Based on Land Use/Land Cover and Climate Changes Using the SWAT Model. Water Resources Management, 37(10), 4177–4194. https://doi.org/10.1007/S11269-023-03545-6

Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2012a). Soil and Water Assessment Tool: Input/Output Files. http://swat.tamu.edu/media/69296/SWAT-IO-Documentation-2012.pdf

Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2012b). Soil and Water Assessment Tool (SWAT) User’s Manual, Version 2012. https://doi.org/10.1007/978-0-387-35973-1_1231

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M., Srinivasan, R., Santhi, C., Harmel, D., Griensven, A. van, Liew, M.

Van, Kannan, N., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Biological Systems Engineering: Papers and Publications.

Asselman, N. E. M., Middelkoop, H., & van Dijk, P. M. (2003). The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the River Rhine. Hydrological Processes, 17(16), 3225–3244. https://doi.org/10.1002/hyp.1384

BBWS SO, T. (2019). Laporan TKPSDA WS Serayu Bogowonto.

Bencana Kesehatan.net. (2020). 10 Desa Terendam Banjir Luapan Sungai Bogowonto. 2020.

Boyle, D. P., Gupta, H. V., & Sorooshian, S. (2000). Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resources Research, 36(12), 3663–3674. https://doi.org/10.1029/2000WR900207

Christanto, N. (2008). Hydrological – Slope Stability Modeling for Landslide Hazard Assessment by means of GIS and Remote Sensing Data in Geo-Information for Spatial Planning and Risk Management. https://www.itc.nl/library/papers_2008/msc/ugm/nugroho.pdf

Christanto, N., Setiawan, M. A., Nurkholis, A., Istikhomah, S., Anajib, D. W., & Purnomo, A. D. (2019). Rainfall-Runoff and Sediment Yield Modelling in Volcanic catchment using SWAT, a Case Study in Opak Watershed. IOP Conference Series: Earth and Environmental Science, 256(1). https://doi.org/10.1088/1755-1315/256/1/012015

Christanto, N., Setiawan, M. A., Nurkholis, A., Istiqomah, S., Sartohadi, J., & Hadi, M. P. (2018). Analisis Laju Sedimen DAS Serayu Hulu dengan Menggunakan Model SWAT. Majalah Geografi Indonesia, 32(1), 50. https://doi.org/10.22146/mgi.32280

D. M. Amatya, & M. K. Jha. (2011). Evaluating the SWAT Model for a Low-Gradient Forested Watershed in Coastal South Carolina. Transactions of the ASABE, 54(6), 2151–2163. https://doi.org/10.13031/2013.40671

dos R. Pereira, D., Martinez, M. A., Pruski, F. F., & da Silva, D. D. (2016). Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: Calibration and validation tests. Journal of Hydrology: Regional Studies, 7, 14–37. https://doi.org/10.1016/j.ejrh.2016.05.002

Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). SWAT: Hystorical development, applications, and future research directions. 50(4), 1211–1250.

Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. Journal of Hydrologic Engineering, 4(2), 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)

Hamby, D. M. (1994). A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment, 32(2), 135–154. https://doi.org/10.1007/BF00547132

Harashina, K., Takeuchi, K., Tsunekawa, A., & Arifin, H. S. (2003). Nitrogen flows due to human activities in the Cianjur-Cisokan watershed area in the middle Citarum drainage basin, West Java, Indonesia: A case study at hamlet scale. Agriculture, Ecosystems and Environment, 100(1–3), 75–90. https://doi.org/10.1016/S0167-8809(03)00173-7

Metronews.com. (2023). Kementerian PUPR Kebut Proyek Pengendalian Banjir Bandara YIA.

Motovilov, Y. G., Gottschalk, L., Engeland, K., & Rodhe, A. (1999). Validation of a distributed hydrological model against spatial observations. Agricultural and Forest Meteorology, 98–99, 257–277. https://doi.org/10.1016/S0168-1923(99)00102-1

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and Water Assessment Tool Theoretical Documentation Version 2009 Texas Water Resources Institute. http://swat.tamu.edu/media/99192/swat2009-theory.pdf

Pandey, A., Himanshu, S. K., Mishra, S. K., & Singh, V. P. (2016). Physically based soil erosion and sediment yield models revisited. CATENA, 147, 595–620. https://doi.org/10.1016/j.catena.2016.08.002

Pereira, P., Gomes, E., & Rocha, J. (2022). Mapping and Forecasting Land Use: The Present and Future of Planning. Mapping and Forecasting Land Use: The Present and Future of Planning, 1–325. https://doi.org/10.1016/C2020-0-02839-2

Pereira, P., Gomes, E., & Rocha, J. G. (n.d.). Mapping and forecasting land use : the present and future of planning.

Rubio, C., Rojas, F., Rubio, M. C., Sales, R., Rubio, F., Verdugo, L., Greco, G., & Martín, F. (2022). Drivers of land use and land cover changes in South America. A review focused on drylands. In Mapping and Forecasting Land Use: The Present and Future of Planning. Elsevier. https://doi.org/10.1016/B978-0-323-90947-1.00004-1

Schilirò, L., Montrasio, L., & Scarascia Mugnozza, G. (2016). Prediction of shallow landslide occurrence: Validation of a physically-based approach through a real case study. Science of The Total Environment, 569, 134–144. https://doi.org/10.1016/j.scitotenv.2016.06.124

Setiawan, M. A., Stoetter, J., Sartohadi, J., & Christanto, N. (2009). The Integrated Soil Erosion Risk Management Model of Central Java , Indonesia. 11.

Sun, L., Nistor, I., & Seidou, O. (2015). Streamflow data assimilation in SWAT model using Extended Kalman Filter. Journal of Hydrology, 531, 671–684. https://doi.org/10.1016/j.jhydrol.2015.10.060

sunandar, ahmad dany, Suhendang, E., . H., Jaya, I. N. S., & . M. (2014). Land Use Optimization in Asahan Watershed with Linear Programming and SWAT Model. International Journal of Sciences: Basic and Applied Research (IJSBAR), 18(1), 63–78. http://gssrr.org/index.php?journal=JournalOfBasicAndApplied&page=article&op=view&path%5B%5D=2678

Vadas, P. A., & Powell, J. M. (2013). Monitoring nutrient loss in runoff from dairy cattle lots. Agriculture, Ecosystems & Environment, 181, 127–133. https://doi.org/10.1016/J.AGEE.2013.09.025

Yustika, R. D., Tarigan, S. D., & Sudadi, U. (2012). SIMULASI MANAJEMEN LAHAN DI DAS CILIWUNG HULU MENGGUNAKAN MODEL SWAT. Informatika Pertanian, 21(2), 71. https://doi.org/10.21082/ip.v21n2.2012.p71-79

Zhang, S., Fan, W., Li, Y., & Yi, Y. (2017). The influence of changes in land use and landscape patterns on soil erosion in a watershed. Science of The Total Environment, 574, 34–45. https://doi.org/10.1016/j.scitotenv.2016.09.024

Zhao, J., Zhang, N., Liu, Z., Zhang, Q., & Shang, C. (2024). SWAT model applications: From hydrological processes to ecosystem services. Science of The Total Environment, 931, 172605. https://doi.org/10.1016/J.SCITOTENV.2024.172605




DOI: https://doi.org/10.37905/jgeosrev.v6i2.26055



Copyright (c) 2024 Nugroho Christanto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.