Impacts of Land Use on Runoff and Sediment Dynamics in Tropical Watersheds: A Case Study in Bogowonto Upper Watershed
Abstract
Keywords
Full Text:
PDFReferences
Abbaszadeh, M., Bazrafshan, O., Mahdavi, R., Sardooi, E. R., & Jamshidi, S. (2023). Modeling Future Hydrological Characteristics Based on Land Use/Land Cover and Climate Changes Using the SWAT Model. Water Resources Management, 37(10), 4177–4194. https://doi.org/10.1007/S11269-023-03545-6
Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2012a). Soil and Water Assessment Tool: Input/Output Files. http://swat.tamu.edu/media/69296/SWAT-IO-Documentation-2012.pdf
Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2012b). Soil and Water Assessment Tool (SWAT) User’s Manual, Version 2012. https://doi.org/10.1007/978-0-387-35973-1_1231
Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M., Srinivasan, R., Santhi, C., Harmel, D., Griensven, A. van, Liew, M.
Van, Kannan, N., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Biological Systems Engineering: Papers and Publications.
Asselman, N. E. M., Middelkoop, H., & van Dijk, P. M. (2003). The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the River Rhine. Hydrological Processes, 17(16), 3225–3244. https://doi.org/10.1002/hyp.1384
BBWS SO, T. (2019). Laporan TKPSDA WS Serayu Bogowonto.
Bencana Kesehatan.net. (2020). 10 Desa Terendam Banjir Luapan Sungai Bogowonto. 2020.
Boyle, D. P., Gupta, H. V., & Sorooshian, S. (2000). Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resources Research, 36(12), 3663–3674. https://doi.org/10.1029/2000WR900207
Christanto, N. (2008). Hydrological – Slope Stability Modeling for Landslide Hazard Assessment by means of GIS and Remote Sensing Data in Geo-Information for Spatial Planning and Risk Management. https://www.itc.nl/library/papers_2008/msc/ugm/nugroho.pdf
Christanto, N., Setiawan, M. A., Nurkholis, A., Istikhomah, S., Anajib, D. W., & Purnomo, A. D. (2019). Rainfall-Runoff and Sediment Yield Modelling in Volcanic catchment using SWAT, a Case Study in Opak Watershed. IOP Conference Series: Earth and Environmental Science, 256(1). https://doi.org/10.1088/1755-1315/256/1/012015
Christanto, N., Setiawan, M. A., Nurkholis, A., Istiqomah, S., Sartohadi, J., & Hadi, M. P. (2018). Analisis Laju Sedimen DAS Serayu Hulu dengan Menggunakan Model SWAT. Majalah Geografi Indonesia, 32(1), 50. https://doi.org/10.22146/mgi.32280
D. M. Amatya, & M. K. Jha. (2011). Evaluating the SWAT Model for a Low-Gradient Forested Watershed in Coastal South Carolina. Transactions of the ASABE, 54(6), 2151–2163. https://doi.org/10.13031/2013.40671
dos R. Pereira, D., Martinez, M. A., Pruski, F. F., & da Silva, D. D. (2016). Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: Calibration and validation tests. Journal of Hydrology: Regional Studies, 7, 14–37. https://doi.org/10.1016/j.ejrh.2016.05.002
Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). SWAT: Hystorical development, applications, and future research directions. 50(4), 1211–1250.
Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. Journal of Hydrologic Engineering, 4(2), 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
Hamby, D. M. (1994). A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment, 32(2), 135–154. https://doi.org/10.1007/BF00547132
Harashina, K., Takeuchi, K., Tsunekawa, A., & Arifin, H. S. (2003). Nitrogen flows due to human activities in the Cianjur-Cisokan watershed area in the middle Citarum drainage basin, West Java, Indonesia: A case study at hamlet scale. Agriculture, Ecosystems and Environment, 100(1–3), 75–90. https://doi.org/10.1016/S0167-8809(03)00173-7
Metronews.com. (2023). Kementerian PUPR Kebut Proyek Pengendalian Banjir Bandara YIA.
Motovilov, Y. G., Gottschalk, L., Engeland, K., & Rodhe, A. (1999). Validation of a distributed hydrological model against spatial observations. Agricultural and Forest Meteorology, 98–99, 257–277. https://doi.org/10.1016/S0168-1923(99)00102-1
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and Water Assessment Tool Theoretical Documentation Version 2009 Texas Water Resources Institute. http://swat.tamu.edu/media/99192/swat2009-theory.pdf
Pandey, A., Himanshu, S. K., Mishra, S. K., & Singh, V. P. (2016). Physically based soil erosion and sediment yield models revisited. CATENA, 147, 595–620. https://doi.org/10.1016/j.catena.2016.08.002
Pereira, P., Gomes, E., & Rocha, J. (2022). Mapping and Forecasting Land Use: The Present and Future of Planning. Mapping and Forecasting Land Use: The Present and Future of Planning, 1–325. https://doi.org/10.1016/C2020-0-02839-2
Pereira, P., Gomes, E., & Rocha, J. G. (n.d.). Mapping and forecasting land use : the present and future of planning.
Rubio, C., Rojas, F., Rubio, M. C., Sales, R., Rubio, F., Verdugo, L., Greco, G., & MartÃn, F. (2022). Drivers of land use and land cover changes in South America. A review focused on drylands. In Mapping and Forecasting Land Use: The Present and Future of Planning. Elsevier. https://doi.org/10.1016/B978-0-323-90947-1.00004-1
Schilirò, L., Montrasio, L., & Scarascia Mugnozza, G. (2016). Prediction of shallow landslide occurrence: Validation of a physically-based approach through a real case study. Science of The Total Environment, 569, 134–144. https://doi.org/10.1016/j.scitotenv.2016.06.124
Setiawan, M. A., Stoetter, J., Sartohadi, J., & Christanto, N. (2009). The Integrated Soil Erosion Risk Management Model of Central Java , Indonesia. 11.
Sun, L., Nistor, I., & Seidou, O. (2015). Streamflow data assimilation in SWAT model using Extended Kalman Filter. Journal of Hydrology, 531, 671–684. https://doi.org/10.1016/j.jhydrol.2015.10.060
sunandar, ahmad dany, Suhendang, E., . H., Jaya, I. N. S., & . M. (2014). Land Use Optimization in Asahan Watershed with Linear Programming and SWAT Model. International Journal of Sciences: Basic and Applied Research (IJSBAR), 18(1), 63–78. http://gssrr.org/index.php?journal=JournalOfBasicAndApplied&page=article&op=view&path%5B%5D=2678
Vadas, P. A., & Powell, J. M. (2013). Monitoring nutrient loss in runoff from dairy cattle lots. Agriculture, Ecosystems & Environment, 181, 127–133. https://doi.org/10.1016/J.AGEE.2013.09.025
Yustika, R. D., Tarigan, S. D., & Sudadi, U. (2012). SIMULASI MANAJEMEN LAHAN DI DAS CILIWUNG HULU MENGGUNAKAN MODEL SWAT. Informatika Pertanian, 21(2), 71. https://doi.org/10.21082/ip.v21n2.2012.p71-79
Zhang, S., Fan, W., Li, Y., & Yi, Y. (2017). The influence of changes in land use and landscape patterns on soil erosion in a watershed. Science of The Total Environment, 574, 34–45. https://doi.org/10.1016/j.scitotenv.2016.09.024
Zhao, J., Zhang, N., Liu, Z., Zhang, Q., & Shang, C. (2024). SWAT model applications: From hydrological processes to ecosystem services. Science of The Total Environment, 931, 172605. https://doi.org/10.1016/J.SCITOTENV.2024.172605
DOI: https://doi.org/10.37905/jgeosrev.v6i2.26055
Copyright (c) 2024 Nugroho Christanto

This work is licensed under a Creative Commons Attribution 4.0 International License.