Mapping Flood-Prone Zone Using CMA and NDWI in Muaradua District, South OKU

Dwie Rahmanita, Idarwati Idarwati

Abstract


Flooding is a recurring disaster in Indonesia, especially in vulnerable areas such as Muaradua District, South Ogan Komering Ulu. This study aims to delineate flood-prone zones using an integrated approach that combines Composite Mapping Analysis (CMA) and the Normalized Difference Water Index (NDWI). Six environmental parameters river density, soil type, land cover, rainfall, elevation, and slope gradient were processed using Geographic Information Systems (GIS) to generate a vulnerability index. Sentinel-2 imagery was used to detect actual inundation through NDWI computation. The findings show that 43.08% of the study area is slightly vulnerable, 33.02% vulnerable, and 4.59% very vulnerable, while NDWI analysis revealed that 12.31% of the total area was inundated. High-risk villages such as Pasar Muaradua and Pancur Pungah exhibited flood exposure levels exceeding 29%. Spatial overlay analysis demonstrated strong concordance between model-based vulnerability and observed inundation, validating the robustness of the integrated method. These results provide critical input for spatial planning and targeted flood mitigation efforts in the region.


Keywords


CMA; NDWI; Flood Vulnerability; GIS; Iundation

Full Text:

PDF

References


Ahmad, F. A., Permana, A. P., & Hutagalung, R. (2025). Density and Porosity Analysis of Limestone as a Groundwater Reservoir in Kayubulan Village, Gorontalo Regency. Jambura Geoscience Review, 7(1), 25–36. https://doi.org/10.37905/JGEOSREV.V7I1.28250

AlAli, A. M., Salih, A., & Hassaballa, A. (2023). Geospatial-Based Analytical Hierarchy Process (AHP) and Weighted Product Model (WPM) Techniques for Mapping and Assessing Flood Susceptibility in the Wadi Hanifah Drainage Basin, Riyadh Region, Saudi Arabia. Water 2023, Vol. 15, Page 1943, 15(10), 1943. https://doi.org/10.3390/W15101943

Anderson, J. T., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. Professional Paper. https://doi.org/10.3133/PP964

Chen, Y. (2022). Flood hazard zone mapping incorporating geographic information system (GIS) and multi-criteria analysis (MCA) techniques. Journal of Hydrology, 612, 128268. https://doi.org/10.1016/J.JHYDROL.2022.128268

Criss, R. E., & Nelson, D. L. (2022). Stage-based flood inundation mapping. Natural Hazards, 112(3), 2385–2401. https://doi.org/10.1007/S11069-022-05270-6/METRICS

Haacke, N., & Paton, E. (2023). Impact-based classification of extreme rainfall events using a simplified overland flow model. Urban Water Journal, 20(3), 330–340. https://doi.org/10.1080/1573062X.2022.2164731

Hadian, S., Afzalimehr, H., Soltani, N., Tabarestani, E. S., Karakouzian, M., & Nazari-Sharabian, M. (2022). Determining Flood Zonation Maps, Using New Ensembles of Multi-Criteria Decision-Making, Bivariate Statistics, and Artificial Neural Network. Water 2022, Vol. 14, Page 1721, 14(11), 1721. https://doi.org/10.3390/W14111721

Handiani, D. N., & Purnomo, D. (2024). Evaluation of Floods Susceptibility Models Based on Different Pairwise Parameters in the Analytical Hierarchy Process: Case Study Cilemer and Ciliman Watersheds. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 14(4), 684. https://doi.org/10.29244/jpsl.14.4.684

Hisyam, F., Permana, A. P., & Hutagalung, R. (2024). Analisis Porositas Batugamping Sebagai Reservoir Air Tanah Daerah Bintalahe, Kabupaten Bone Bolango, Provinsi Gorontalo. Journal of Applied Geoscience and Engineering, 3(2), 99–112. https://doi.org/10.37905/-JAGE.V3I2.30311

Hoshino, T., & Yamada, T. J. (2023). Spatiotemporal classification of heavy rainfall patterns to characterize hydrographs in a high-resolution ensemble climate dataset. Journal of Hydrology, 617, 128910. https://doi.org/10.1016/J.JHYDROL.2022.128910

M Amen, A. R., Mustafa, A., Kareem, D. A., Hameed, H. M., Mirza, A. A., Szydłowski, M., & Bala, B. K. (2023). Mapping of Flood-Prone Areas Utilizing GIS Techniques and Remote Sensing: A Case Study of Duhok, Kurdistan Region of Iraq. Remote Sensing 2023, Vol. 15, Page 1102, 15(4), 1102. https://doi.org/10.3390/RS15041102

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714

Melo, R. H., Pambudi, M. R., & Niode, A. (2024). Socioeconomic status, lake knowledge, and community participation in the sustainable Lake Limboto management, Gorontalo Regency. Journal of Water and Land Development, 60, 177–182. https://doi.org/10.24425/-JWLD.2024.149119

Rosen, M. A., Huang, J., Wang, Y., Lyu, L., Li, J., Li, X., Nishio, M., Sugawara, K., Iwanaga, S., & Chun, P.-J. (2023). Surrogate Model Development for Slope Stability Analysis Using Machine Learning. Sustainability 2023, Vol. 15, Page 10793, 15(14), 10793. https://doi.org/10.3390/SU151410793

Xue, F., Gao, W., Yin, C., Chen, X., Xia, Z., Lv, Y., Zhou, Y., & Wang, M. (2022). Flood Monitoring by Integrating Normalized Difference Flood Index and Probability Distribution of Water Bodies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 4170–4179. https://doi.org/10.1109/JSTARS.2022.3176388




DOI: https://doi.org/10.37905/jgeosrev.v7i2.28483



Copyright (c) 2025 Dwie Rahmanita, Idarwati -

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.