Potensi Mikrocrystallincellulose Terimobilisasi Nanopartikel Cupri Oxide/Periodat (MCC/CuO-NP/KIO4) sebagai Adsorben Metilen Blue

Sri Rahayu Latif, Wiwin R Kunusa

Abstract


Penelitian ini bertujuan untuk mengadsorpsi zat pewarna sintetis metilen blue menggunakan Mikrocrystallincellulose (MCC) Tterimobilisasi nanopartikel cupri oxide/periodat (MCC/CuO-NP/KIO4) berbasis tongkol jagung dengan aktivasi NaOH 14%. Hasil karakterisasi MCC: Viscositas 86 cp, Selulosa 88.4%, Alfa-selulosa 45.2%. Adsorben (MCC/CuO-NP/KIO4) yang dihasilkan dikarakterisasi menggunakan FT-IR, SEM, XRD. Karakteristik spektra FT-IR (MCC/CuO-NP/KIO4) menunjukkan adanya puncak C=O yang sangat tajam pada 1055.70 cm-1dan 1028.37 cm-1 berasal dari getaran C-O-C. Indikasi adanya puncak partikel CuO pada bilangan gelombang 894.62 cm-1 , 1158.19 cm-1 , 1314.17 cm-1 . Difraktometer sinar-X (XRD) menunjukkan terjadinya penurunan kristalinitas serat sebagai hasil dari oksidasi. Permukaan morfologis selama oksidasi diamati menggunakan SEM. Pengukuran kapasitas adsorpsi metilen blue menggunakan Spektrofotometer UV-VIS. Pembuatan kurva standar dengan konsentrasi larutan standar (1 ppm, 5 ppm, 10 ppm, 15 ppm, 20 ppm) menghasilkan nilai r = 0.9888. Kapasitas adsorpsi yang dihasilkan dengan variasi konsentrasi larutan metilen blue 1ppm, 3 ppm, 7 ppm, 9 ppm adalah 70% - 80%.

Keywords


Mikrocrystallincellulose; Nanopartikel; Cupri Oxide/Periodat (MCC/CuONP/KIO4).

Full Text:

PDF

References


Calvini, P., & Gorassini, A. (2012). Surface and bulk reactions of cellulose oxidation by periodate. A simple kinetic model. Cellulose, 19(4), 1107-1114.

Höglund, E. (2015). Production of dialdehyde cellulose and periodate regeneration: Towards feasible oxidation processes.

Leguy, J., Diallo, A., Putaux, J.-L., Nishiyama, Y., Heux, L., & Jean, B. (2018). Periodate oxidation followed by NaBH4 reduction converts microfibrillated cellulose into sterically stabilized neutral cellulose nanocrystal suspensions. Langmuir, 34(37), 11066-11075.

Lindh, J., Ruan, C., Strømme, M., & Mihranyan, A. (2016). Preparation of porous cellulose beads via introduction of diamine spacers. Langmuir, 32(22), 5600-5607.

Plappert, S. F., Quraishi, S., Pircher, N., Mikkonen, K. S., Veigel, S., Klinger, K. M., Potthast, A., Rosenau, T., & Liebner, F. W. (2018). Transparent, flexible, and strong 2, 3-dialdehyde cellulose films with high oxygen barrier properties. Biomacromolecules, 19(7), 2969-2978.

Ruan, C.-Q., Strømme, M., & Lindh, J. (2018). Preparation of porous 2, 3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye. Carbohydrate Polymers, 181, 200-207.

Terinte, N., Ibbett, R., & Schuster, K. C. (2011). Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques. Lenzinger Berichte, 89(1), 118-131.

Thiangtham, S., Runt, J., & Manuspiya, H. (2019). Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohydrate Polymers, 208, 314-322.

Zhang, H., Liu, P., Peng, X., Chen, S., & Zhang, K. (2019). Interfacial Synthesis of Cellulose-Derived Solvent-Responsive Nanoparticles via Schiff Base Reaction. ACS Sustainable Chemistry & Engineering, 7(19), 16595-16603.




DOI: https://doi.org/10.34312/jambchem.v2i2.7065

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jambura Journal of Chemistry



EDITORIAL OFFICE

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.