Dedek Yusuf Pulungan


Zirconia (ZrO2) is a zirconium metal oxide which has superior toughness, strength, good resistance and biocompatibility. ZrO2 has three polymorphic phases: monoclinic (m-ZrO2), tetragonal (t-ZrO2) and cubic (c-ZrO2). Various types of zirconia ceramics for dental material applications such as tetragonal zirconia doped with yttrium cations (Y-TZP), zirconia doped with magnesium cations (Mg-PSZ) and zirconia reinforced alumina (ZTA). In general, zirconia is doped with a stabilizer to maintain its structure at room temperature. A stabilizer that has been developed using magnesia (MgO). Magnesia-stabilized zirconia is generally called Mg-PSZ. The process of molding dental block materials usually utilizes Computer Aided Design and Computer Aided Manufacturing (CAD / CAM) technology and the glasing process. Dental block material self-tests are currently being performed in vivo on mice. Studies on dental block materials, especially Mg-PSZ, are very important so that the use of Mg-PSZ in the field of dental restoration can develop rapidly in the future.


Dental Block; Mg-PSZ; Zirconia


Abd El-Ghany, O. S., & Sherief, A. H. (2016). Zirconia based ceramics, some clinical and biological aspects: Review. Future Dental Journal, 2(2), 55–64.

Bona, A. Della, Pecho, O. E., & Alessandretti, R. (2015). Zirconia as a dental biomaterial. Materials, 8(8), 4978–4991.

Chen, L. B. (2006). Yttria-stabilized zirconia thermal barrier coatings - A review. Surface Review and Letters, 13(5), 535–544.

Clavel, G., Willinger, M. G., Zitoun, D., & Pinna, N. (2008). Manganese-doped zirconia nanocrystals. European Journal of Inorganic Chemistry, 6, 863–868.

Davar, F., Shayan, N., Hojjati-Najafabadi, A., Sabaghi, V., & Hasani, S. (2017). Development of ZrO2-MgO nanocomposite powders by the modified sol-gel method. International Journal of Applied Ceramic Technology, 14(2), 211–219.

Denry, I., & Kelly, J. R. (2008). State of the art of zirconia for dental applications. Dental Materials, 24(3), 299–307.

Gautam, C., Joyner, J., Gautam, A., Rao, J., & Vajtai, R. (2016). Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Transactions, 45(48), 19194–19215.

Gharibshahi, L., Saion, E., Gharibshahi, E., Shaari, A. H., & Matori, K. A. (2017). Structural and optical properties of ag nanoparticles synthesized by thermal treatment method. Materials, 10(4), 402.

Grech, J., & Antunes, E. (2019). Zirconia in dental prosthetics: A literature review. Journal of Materials Research and Technology, 8(5), 4956–4964.

Hao, S. J., Wang, C., Liu, T. Le, Mao, Z. M., Mao, Z. Q., & Wang, J. L. (2017). Fabrication of nanoscale yttria stabilized zirconia for solid oxide fuel cell. International Journal of Hydrogen Energy, 42(50), 29949–29959.

Jiang, L., Guo, S., Bian, Y., Zhang, M., & Ding, W. (2016). Effect of sintering temperature on mechanical properties of magnesia partially stabilized zirconia refractory. Ceramics International, 42(9), 10593–10598.

Khattab, R. M., Hanna, S. B., Zawrah, M. F., & Girgis, L. G. (2015). Alumina-zircon refractory materials for lining of the basin of glass furnaces: Effect of processing technique and TiO2 addition. Ceramics International, 41(1), 1623–1629.

Kouva, S., Honkala, K., Lefferts, L., & Kanervo, J. (2015). Review: Monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catalysis Science & Technology, 1–19.

Liang, X., Qiu, Y., Zhou, S., Hu, X., Yu, G., & Deng, X. (2008). Preparation and properties of dental zirconia ceramics. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed), 15(6), 764–768.

Manicone, P. F., Rossi Iommetti, P., & Raffaelli, L. (2007). An overview of zirconia ceramics: Basic properties and clinical applications. Journal of Dentistry, 35(11), 819–826.

Maridurai, T., Balaji, D., & Sagadevan, S. (2016). Synthesis and characterization of yttrium stabilized zirconia nanoparticles. Materials Research, 19(4), 812–816.

Matei, M., Voinea, E. A., Rîcă, R., Manolea, H., Mogoantă, L., Salan, A., Rîcă, A., Dinescu, V. C., & Cioateră, N. (2019). New zirconia-based materials for dental applications. Structural, morphological and histological evaluation. Ceramics International, 45(12), 14859–14866.

Mommer, N., Lee, T., & Gardner, J. A. (2000). Stability of monoclinic and tetragonal zirconia at low oxygen partial pressure. Journal of Materials Research, 15(2), 377–381.

Özkurt, Z., & Kazazoĝlu, E. (2010). Clinical success of zirconia in dental applications. Journal of Prosthodontics, 19(1), 64–68.

Qunbo, F., Fuchi, W., Huiling, Z., & Feng, Z. (2008). Study of ZrO2 phase structure and electronic properties. Molecular Simulation, 34(10–15), 1099–1103.

Sun, H., Yan, S., Li, P., Tan, Q., & Wu, A. (2011). Effects of monoclinic ZrO2 with different particle size on properties of zirconia refractories. Advanced Materials Research, 335–336, 721–727.

Swab, J. J. (2001). Role of Oxide Additives in Stabilizing Zirconia for Coating Application (pp. 3–13). Army Research Laboratory.

Terki, R., Bertrand, G., Aourag, H., & Coddet, C. (2006). Structural and electronic properties of zirconia phases: A FP-LAPW investigations. Materials Science in Semiconductor Processing, 9(6), 1006–1013.

Tomishige, K., Ikeda, Y., Sakaihori, T., & Fujimoto, K. (2000). Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Journal of Catalysis, 192(2), 355–362.



  • There are currently no refbacks.

Copyright (c) 2021 Jambura Journal of Chemistry


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.