STUDI TENTANG ZIRKONIA (ZrO2) DAN APLIKASI ZIRKONIA TERSTABILKAN MAGNESIA (MgPSZ) SEBAGAI MATERIAL DENTAL BLOCK

Dedek Yusuf Pulungan

Abstract


Zirconia (ZrO2) is a zirconium metal oxide which has superior toughness, strength, good resistance and biocompatibility. ZrO2 has three polymorphic phases: monoclinic (m-ZrO2), tetragonal (t-ZrO2) and cubic (c-ZrO2). Various types of zirconia ceramics for dental material applications such as tetragonal zirconia doped with yttrium cations (Y-TZP), zirconia doped with magnesium cations (Mg-PSZ) and zirconia reinforced alumina (ZTA). In general, zirconia is doped with a stabilizer to maintain its structure at room temperature. A stabilizer that has been developed using magnesia (MgO). Magnesia-stabilized zirconia is generally called Mg-PSZ. The process of molding dental block materials usually utilizes Computer Aided Design and Computer Aided Manufacturing (CAD / CAM) technology and the glasing process. Dental block material self-tests are currently being performed in vivo on mice. Studies on dental block materials, especially Mg-PSZ, are very important so that the use of Mg-PSZ in the field of dental restoration can develop rapidly in the future.

Keywords


Dental Block; Mg-PSZ; Zirconia

References


Abd El-Ghany, O. S., & Sherief, A. H. (2016). Zirconia based ceramics, some clinical and biological aspects: Review. Future Dental Journal, 2(2), 55–64. https://doi.org/10.1016/j.fdj.2016.10.002

Bona, A. Della, Pecho, O. E., & Alessandretti, R. (2015). Zirconia as a dental biomaterial. Materials, 8(8), 4978–4991. https://doi.org/10.3390/ma8084978

Chen, L. B. (2006). Yttria-stabilized zirconia thermal barrier coatings - A review. Surface Review and Letters, 13(5), 535–544. https://doi.org/10.1142/S0218625X06008670

Clavel, G., Willinger, M. G., Zitoun, D., & Pinna, N. (2008). Manganese-doped zirconia nanocrystals. European Journal of Inorganic Chemistry, 6, 863–868. https://doi.org/10.1002/ejic.200700977

Davar, F., Shayan, N., Hojjati-Najafabadi, A., Sabaghi, V., & Hasani, S. (2017). Development of ZrO2-MgO nanocomposite powders by the modified sol-gel method. International Journal of Applied Ceramic Technology, 14(2), 211–219. https://doi.org/10.1111/ijac.12624

Denry, I., & Kelly, J. R. (2008). State of the art of zirconia for dental applications. Dental Materials, 24(3), 299–307. https://doi.org/10.1016/j.dental.2007.05.007

Gautam, C., Joyner, J., Gautam, A., Rao, J., & Vajtai, R. (2016). Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Transactions, 45(48), 19194–19215. https://doi.org/10.1039/c6dt03484e

Gharibshahi, L., Saion, E., Gharibshahi, E., Shaari, A. H., & Matori, K. A. (2017). Structural and optical properties of ag nanoparticles synthesized by thermal treatment method. Materials, 10(4), 402. https://doi.org/10.3390/ma10040402

Grech, J., & Antunes, E. (2019). Zirconia in dental prosthetics: A literature review. Journal of Materials Research and Technology, 8(5), 4956–4964. https://doi.org/10.1016/j.jmrt.2019.06.043

Hao, S. J., Wang, C., Liu, T. Le, Mao, Z. M., Mao, Z. Q., & Wang, J. L. (2017). Fabrication of nanoscale yttria stabilized zirconia for solid oxide fuel cell. International Journal of Hydrogen Energy, 42(50), 29949–29959. https://doi.org/10.1016/j.ijhydene.2017.08.143

Jiang, L., Guo, S., Bian, Y., Zhang, M., & Ding, W. (2016). Effect of sintering temperature on mechanical properties of magnesia partially stabilized zirconia refractory. Ceramics International, 42(9), 10593–10598. https://doi.org/10.1016/j.ceramint.2016.03.136

Khattab, R. M., Hanna, S. B., Zawrah, M. F., & Girgis, L. G. (2015). Alumina-zircon refractory materials for lining of the basin of glass furnaces: Effect of processing technique and TiO2 addition. Ceramics International, 41(1), 1623–1629. https://doi.org/10.1016/j.ceramint.2014.09.100

Kouva, S., Honkala, K., Lefferts, L., & Kanervo, J. (2015). Review: Monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catalysis Science & Technology, 1–19. https://doi.org/10.1039/b000000x

Liang, X., Qiu, Y., Zhou, S., Hu, X., Yu, G., & Deng, X. (2008). Preparation and properties of dental zirconia ceramics. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed), 15(6), 764–768. https://doi.org/10.1016/S1005-8850(08)60284-4

Manicone, P. F., Rossi Iommetti, P., & Raffaelli, L. (2007). An overview of zirconia ceramics: Basic properties and clinical applications. Journal of Dentistry, 35(11), 819–826. https://doi.org/10.1016/j.jdent.2007.07.008

Maridurai, T., Balaji, D., & Sagadevan, S. (2016). Synthesis and characterization of yttrium stabilized zirconia nanoparticles. Materials Research, 19(4), 812–816. https://doi.org/10.1590/1980-5373-MR-2016-0196

Matei, M., Voinea, E. A., Rîcă, R., Manolea, H., Mogoantă, L., Salan, A., Rîcă, A., Dinescu, V. C., & Cioateră, N. (2019). New zirconia-based materials for dental applications. Structural, morphological and histological evaluation. Ceramics International, 45(12), 14859–14866. https://doi.org/10.1016/j.ceramint.2019.04.217

Mommer, N., Lee, T., & Gardner, J. A. (2000). Stability of monoclinic and tetragonal zirconia at low oxygen partial pressure. Journal of Materials Research, 15(2), 377–381. https://doi.org/10.1557/JMR.2000.0059

Özkurt, Z., & Kazazoĝlu, E. (2010). Clinical success of zirconia in dental applications. Journal of Prosthodontics, 19(1), 64–68. https://doi.org/10.1111/j.1532-849X.2009.00513.x

Qunbo, F., Fuchi, W., Huiling, Z., & Feng, Z. (2008). Study of ZrO2 phase structure and electronic properties. Molecular Simulation, 34(10–15), 1099–1103. https://doi.org/10.1080/08927020802101759

Sun, H., Yan, S., Li, P., Tan, Q., & Wu, A. (2011). Effects of monoclinic ZrO2 with different particle size on properties of zirconia refractories. Advanced Materials Research, 335–336, 721–727. https://doi.org/10.4028/www.scientific.net/AMR.335-336.721

Swab, J. J. (2001). Role of Oxide Additives in Stabilizing Zirconia for Coating Application (pp. 3–13). Army Research Laboratory.

Terki, R., Bertrand, G., Aourag, H., & Coddet, C. (2006). Structural and electronic properties of zirconia phases: A FP-LAPW investigations. Materials Science in Semiconductor Processing, 9(6), 1006–1013. https://doi.org/10.1016/j.mssp.2006.10.033

Tomishige, K., Ikeda, Y., Sakaihori, T., & Fujimoto, K. (2000). Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Journal of Catalysis, 192(2), 355–362. https://doi.org/10.1006/jcat.2000.2854




DOI: https://doi.org/10.34312/jambchem.v3i2.9684

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jambura Journal of Chemistry



EDITORIAL OFFICE

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.