Sel Bahan Bakar Oksida Padat Sebagai Sumber Energi Yang Ramah Lingkungan di Masa Pandemik COVID-19

Rihan Amila Putri, Atiek Rostika Noviyanti

Abstract


COVID-19 (caused by SARS-CoV-2) has spread throughout the world. The need of power supply for hospitals are one of the concerns during pandemic. Power requirement can be fulfilled by SOFC through an electrochemical process to generate electricity. SOFC efficiency up to 85% which can be an alternative that providing an environmentally friendly (low emission) and efficient to generate electricity. SOFC components which fulfilled various aspects, are expected to produce good electrochemical performance in order to form high efficiency when combined with CHP, APU, or UPS to help overcoming the electricity supply in hospitals and health centre during the COVID-19 pandemic.

Keywords


Anode; Cathode; COVID-19; Electrolyte; SOFC.

Full Text:

PDF

References


Abd Aziz, A. J., Baharuddin, N. A., Somalu, M. R., & Muchtar, A. (2020). Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications. Ceramics International, Vol. 46, pp. 23314–23325. Elsevier Ltd. https://doi.org/10.1016/j.ceramint.2020.06.176

Abdalla, A. M., Hossain, S., Azad, A. T., Petra, P. M. I., Begum, F., Eriksson, S. G., & Azad, A. K. (2018). Nanomaterials for solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews, 82(September 2016), 353–368. https://doi.org/10.1016/j.rser.2017.09.046

Afroze, S., Karim, A. H., Cheok, Q., Eriksson, S., & Azad, A. K. (2019). Latest development of double perovskite electrode materials for solid oxide fuel cells: a review. Frontiers in Energy, Vol. 13, pp. 770–797. Higher Education Press. https://doi.org/10.1007/s11708-019-0651-x

Afroze, S., Reza, M. S., Cheok, Q., Taweekun, J., & Azad, A. K. (2020). Solid oxide fuel cell (SOFC); A new approach of energy generation during the pandemic COVID-19. International Journal of Integrated Engineering, 12(5), 245–256. https://doi.org/10.30880/ijie.2020.12.05.030

Alaswad, A., Baroutaji, A., Rezk, A., Ramadan, M., & Olabi, A. G. (2020). Advances in Solid Oxide Fuel Cell Materials. In Reference Module in Materials Science and Materials Engineering. Elsevier. https://doi.org/10.1016/b978-0-12-803581-8.11743-6

Ali, I., & Alharbi, O. M. L. (2020). COVID-19: Disease, management, treatment, and social impact. Science of the Total Environment, 728, 138861. https://doi.org/10.1016/j.scitotenv.2020.138861

Brandon, N. P., & Parkes, M. A. (2016). Fuel Cells: Materials. In Reference Module in Materials Science and Materials Engineering. Elsevier. https://doi.org/10.1016/b978-0-12-803581-8.01726-4

Cao, J., Tu, W. J., Cheng, W., Yu, L., Liu, Y. K., Hu, X., & Liu, Q. (2020). Clinical features and short-term outcomes of 102 patients with coronavirus disease 2019 in Wuhan, China. Clinical Infectious Diseases, 71(15), 748–755. https://doi.org/10.1093/cid/ciaa243

Chavan, A. U., Jadhav, L. D., Jamale, A. P., Patil, S. P., Bhosale, C. H., Bharadwaj, S. R., & Patil, P. S. (2012). Effect of variation of NiO on properties of NiO/GDC (gadolinium doped ceria) nano-composites. Ceramics International, 38(4), 3191–3196. https://doi.org/10.1016/j.ceramint.2011.12.023

Choudhury, A., Chandra, H., & Arora, A. (2013). Application of solid oxide fuel cell technology for power generation - A review. Renewable and Sustainable Energy Reviews, Vol. 20, pp. 430–442. Pergamon. https://doi.org/10.1016/j.rser.2012.11.031

Ciotti, M., Angeletti, S., Minieri, M., Giovannetti, M., Benvenuto, D., Pascarella, S., … Ciccozzi, M. (2019). COVID-19 Outbreak: An Overview. Chemotherapy, 64(5–6), 215–223. https://doi.org/10.1159/000507423

Felseghi, R.-A., Carcadea, E., Raboaca, M. S., TRUFIN, C. N., & Filote, C. (2019). Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications. Energies, 12(23), 4593. https://doi.org/10.3390/en12234593

Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., … Yan, Y. (2020, March 13). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- A n update on the status. Military Medical Research, Vol. 7, p. 11. BioMed Central Ltd. https://doi.org/10.1186/s40779-020-00240-0

Hossain, F. M., Hasanuzzaman, M., Rahim, N. A., & Ping, H. W. (2015). Impact of renewable energy on rural electrification in Malaysia: a review. Clean Technologies and Environmental Policy, 17(4), 859–871. https://doi.org/10.1007/s10098-014-0861-1

Hosseini, S. E., & Wahid, M. A. (2016). Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews, Vol. 57, pp. 850–866. Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.12.112

Huang, K., & Goodenough, J. . (2009a). Solid Oxide Fuel Cell Technology : Principles, Performance and Operations (Oxford, Ed.). Woodhead Publishing Limited.

Huang, K., & Goodenough, J. B. (2009b). Solid Oxide Fuel Cell Technology: Principles, Performance and Operations. In Solid Oxide Fuel Cell Technology: Principles, Performance and Operations. Elsevier Inc. https://doi.org/10.1533/9781845696511

Hussain, S., & Yangping, L. (2020). Review of solid oxide fuel cell materials: cathode, anode, and electrolyte. Energy Transitions, 1, 3. https://doi.org/10.1007/s41825-020-00029-8

Hwang, C., Tsai, C. H., Lo, C. H., & Sun, C. H. (2008). Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode. Journal of Power Sources, 180(1), 132–142. https://doi.org/10.1016/j.jpowsour.2008.01.075

Istomin, S. Y., & Antipov, E. V. (2013). Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russian Chemical Reviews, 82(7), 686–700. https://doi.org/10.1070/rc2013v082n07abeh004390

Jacobson, A. J. (2010). Materials for solid oxide fuel cells. Chemistry of Materials, Vol. 22, pp. 660–674. American Chemical Society. https://doi.org/10.1021/cm902640j

Kaur, P., & Singh, K. (2020). Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceramics International, Vol. 46, pp. 5521–5535. Elsevier Ltd. https://doi.org/10.1016/j.ceramint.2019.11.066

King, G., & Woodward, P. M. (2010). Cation ordering in perovskites. Journal of Materials Chemistry, 20(28), 5785–5796. https://doi.org/10.1039/b926757c

Kuterbekov, K. A. (2018). A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode Radioecology problems tailing pond Koshkar-ATA View project nuclear physics View project. Article in Eurasian Journal of Physics and Functional Materials. https://doi.org/10.29317/ejpfm.2018020309

Liu, Y., Ning, Z., Chen, Y., Guo, M., Liu, Y., Gali, N. K., … Lan, K. (2020). Aerodynamic Characteristics and RNA Concentration of SARS-CoV-2 Aerosol in Wuhan Hospitals during COVID-19 Outbreak. BioRxiv, 2020.03.08.982637. https://doi.org/10.1101/2020.03.08.982637

Lotfi, M., Hamblin, M. R., & Rezaei, N. (2020). COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clinica Chimica Acta, Vol. 508, pp. 254–266. Elsevier B.V. https://doi.org/10.1016/j.cca.2020.05.044

Lu, Y., Zhu, B., Cai, Y., Kim, J.-S., Wang, B., Wang, J., … Li, J. (2016). Progress in Electrolyte-Free Fuel Cells. Frontiers in Energy Research, 4(MAY), 1. https://doi.org/10.3389/fenrg.2016.00017

Morales, M., Roa, J. J., Tartaj, J., & Segarra, M. (2016). A review of doped lanthanum gallates as electrolytes for intermediate temperature solid oxides fuel cells: From materials processing to electrical and thermo-mechanical properties. Journal of the European Ceramic Society, Vol. 36, pp. 1–16. Elsevier Ltd. https://doi.org/10.1016/j.jeurceramsoc.2015.09.025

Nayak, N., Ghosh, A., Bhatta, D. R., & Gharti Magar, D. (2020). COVID-19: a brief review. Journal of Pathology of Nepal, 10(1), 1659–1662. https://doi.org/10.3126/jpn.v10i1.28946

Nazir, H., Muthuswamy, N., Louis, C., Jose, S., Prakash, J., Buan, M. E. M., … M. Kannan, A. (2020). Is the H2 economy realizable in the foreseeable future? Part III: H2 usage technologies, applications, and challenges and opportunities. International Journal of Hydrogen Energy, Vol. 45, pp. 28217–28239. Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2020.07.256

Paules, C. I., Marston, H. D., & Fauci, A. S. (2020). Coronavirus Infections-More Than Just the Common Cold. JAMA - Journal of the American Medical Association, Vol. 323, pp. 707–708. American Medical Association. https://doi.org/10.1001/jama.2020.0757

Radenahmad, N., Azad, A. T., Saghir, M., Taweekun, J., Bakar, M. S. A., Reza, M. S., & Azad, A. K. (2020). A review on biomass derived syngas for SOFC based combined heat and power application. Renewable and Sustainable Energy Reviews, Vol. 119, p. 109560. Elsevier Ltd. https://doi.org/10.1016/j.rser.2019.109560

Ruiz-Morales, J. C., Marrero-López, D., Canales-Vázquez, J., & Irvine, J. T. S. (2011). Symmetric and reversible solid oxide fuel cells. RSC Advances, Vol. 1, pp. 1403–1414. The Royal Society of Chemistry. https://doi.org/10.1039/c1ra00284h

Sammes, N. M., Galloway, K., Serincan, M. F., Suzuki, T., Yamaguchi, T., Awano, M., & Colella, W. (2012). Solid oxide fuel cells. In Handbook of Climate Change Mitigation (Vol. 4, pp. 1703–1727). Springer US. https://doi.org/10.1007/978-1-4419-7991-9_44

Sarfraz, A., Raza, A. H., Mirzaeian, M., Abbas, Q., & Raza, R. (2020). Electrode Materials for Fuel Cells. In Reference Module in Materials Science and Materials Engineering. Elsevier. https://doi.org/10.1016/b978-0-12-803581-8.11742-4

Satuan Tugas Penanganan COVID-19. (2020). Peta Sebaran COVID-19 | Satgas Penanganan COVID-19. Retrieved December 30, 2020, from https://covid19.go.id/peta-sebaran-covid19

Schlom, D. G., Chen, L. Q., Pan, X., Schmehl, A., & Zurbuchen, M. A. (2008). A thin film approach to engineering functionality into oxides. Journal of the American Ceramic Society, 91(8), 2429–2454. https://doi.org/10.1111/j.1551-2916.2008.02556.x

Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: Current knowledge. Virology Journal, Vol. 16, pp. 1–22. BioMed Central Ltd. https://doi.org/10.1186/s12985-019-1182-0

Su, C., Wang, W., Liu, M., Tadé, M. O., & Shao, Z. (2015). Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes. Advanced Energy Materials, 5(14), 1500188. https://doi.org/10.1002/aenm.201500188

Sun, C., Hui, R., & Roller, J. (2010). Cathode materials for solid oxide fuel cells: A review. Journal of Solid State Electrochemistry, 14(7), 1125–1144. https://doi.org/10.1007/s10008-009-0932-0

Tilley, R. J. D. (2016). Perovskites: Structure-Property Relationships . In John Wiley & Sons Ltd. United Kingdom: John Wiley & Sons Ltd. Retrieved from https://www.wiley.com/en-id/Perovskites:+Structure+Property+Relationships-p-9781118935668

Wang, S. Z. (2004). High Performance Fuel Cells Based on LaGaO3 Electrolytes. Acta Physico - Chimica Sinica, 20(1), 43–46. https://doi.org/10.3866/pku.whxb20040109

Yi, Y., Lagniton, P. N. P., Ye, S., Li, E., & Xu, R. H. (2020). COVID-19: What has been learned and to be learned about the novel coronavirus disease. International Journal of Biological Sciences, 16(10), 1753–1766. https://doi.org/10.7150/ijbs.45134




DOI: https://doi.org/10.34312/jambchem.v3i1.9740

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jambura Journal of Chemistry



EDITORIAL OFFICE

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.