Sel Bahan Bakar Oksida Padat Sebagai Sumber Energi Yang Ramah Lingkungan di Masa Pandemik COVID-19

Rihan Amila Putri, Atiek Rostika Noviyanti


COVID-19 (caused by SARS-CoV-2) has spread throughout the world. The need of power supply for hospitals are one of the concerns during pandemic. Power requirement can be fulfilled by SOFC through an electrochemical process to generate electricity. SOFC efficiency up to 85% which can be an alternative that providing an environmentally friendly (low emission) and efficient to generate electricity. SOFC components which fulfilled various aspects, are expected to produce good electrochemical performance in order to form high efficiency when combined with CHP, APU, or UPS to help overcoming the electricity supply in hospitals and health centre during the COVID-19 pandemic.


Anode; Cathode; COVID-19; Electrolyte; SOFC.

Full Text:



Abd Aziz, A. J., Baharuddin, N. A., Somalu, M. R., & Muchtar, A. (2020). Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications. Ceramics International, Vol. 46, pp. 23314–23325. Elsevier Ltd.

Abdalla, A. M., Hossain, S., Azad, A. T., Petra, P. M. I., Begum, F., Eriksson, S. G., & Azad, A. K. (2018). Nanomaterials for solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews, 82(September 2016), 353–368.

Afroze, S., Karim, A. H., Cheok, Q., Eriksson, S., & Azad, A. K. (2019). Latest development of double perovskite electrode materials for solid oxide fuel cells: a review. Frontiers in Energy, Vol. 13, pp. 770–797. Higher Education Press.

Afroze, S., Reza, M. S., Cheok, Q., Taweekun, J., & Azad, A. K. (2020). Solid oxide fuel cell (SOFC); A new approach of energy generation during the pandemic COVID-19. International Journal of Integrated Engineering, 12(5), 245–256.

Alaswad, A., Baroutaji, A., Rezk, A., Ramadan, M., & Olabi, A. G. (2020). Advances in Solid Oxide Fuel Cell Materials. In Reference Module in Materials Science and Materials Engineering. Elsevier.

Ali, I., & Alharbi, O. M. L. (2020). COVID-19: Disease, management, treatment, and social impact. Science of the Total Environment, 728, 138861.

Brandon, N. P., & Parkes, M. A. (2016). Fuel Cells: Materials. In Reference Module in Materials Science and Materials Engineering. Elsevier.

Cao, J., Tu, W. J., Cheng, W., Yu, L., Liu, Y. K., Hu, X., & Liu, Q. (2020). Clinical features and short-term outcomes of 102 patients with coronavirus disease 2019 in Wuhan, China. Clinical Infectious Diseases, 71(15), 748–755.

Chavan, A. U., Jadhav, L. D., Jamale, A. P., Patil, S. P., Bhosale, C. H., Bharadwaj, S. R., & Patil, P. S. (2012). Effect of variation of NiO on properties of NiO/GDC (gadolinium doped ceria) nano-composites. Ceramics International, 38(4), 3191–3196.

Choudhury, A., Chandra, H., & Arora, A. (2013). Application of solid oxide fuel cell technology for power generation - A review. Renewable and Sustainable Energy Reviews, Vol. 20, pp. 430–442. Pergamon.

Ciotti, M., Angeletti, S., Minieri, M., Giovannetti, M., Benvenuto, D., Pascarella, S., … Ciccozzi, M. (2019). COVID-19 Outbreak: An Overview. Chemotherapy, 64(5–6), 215–223.

Felseghi, R.-A., Carcadea, E., Raboaca, M. S., TRUFIN, C. N., & Filote, C. (2019). Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications. Energies, 12(23), 4593.

Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., … Yan, Y. (2020, March 13). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- A n update on the status. Military Medical Research, Vol. 7, p. 11. BioMed Central Ltd.

Hossain, F. M., Hasanuzzaman, M., Rahim, N. A., & Ping, H. W. (2015). Impact of renewable energy on rural electrification in Malaysia: a review. Clean Technologies and Environmental Policy, 17(4), 859–871.

Hosseini, S. E., & Wahid, M. A. (2016). Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews, Vol. 57, pp. 850–866. Elsevier Ltd.

Huang, K., & Goodenough, J. . (2009a). Solid Oxide Fuel Cell Technology : Principles, Performance and Operations (Oxford, Ed.). Woodhead Publishing Limited.

Huang, K., & Goodenough, J. B. (2009b). Solid Oxide Fuel Cell Technology: Principles, Performance and Operations. In Solid Oxide Fuel Cell Technology: Principles, Performance and Operations. Elsevier Inc.

Hussain, S., & Yangping, L. (2020). Review of solid oxide fuel cell materials: cathode, anode, and electrolyte. Energy Transitions, 1, 3.

Hwang, C., Tsai, C. H., Lo, C. H., & Sun, C. H. (2008). Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode. Journal of Power Sources, 180(1), 132–142.

Istomin, S. Y., & Antipov, E. V. (2013). Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russian Chemical Reviews, 82(7), 686–700.

Jacobson, A. J. (2010). Materials for solid oxide fuel cells. Chemistry of Materials, Vol. 22, pp. 660–674. American Chemical Society.

Kaur, P., & Singh, K. (2020). Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceramics International, Vol. 46, pp. 5521–5535. Elsevier Ltd.

King, G., & Woodward, P. M. (2010). Cation ordering in perovskites. Journal of Materials Chemistry, 20(28), 5785–5796.

Kuterbekov, K. A. (2018). A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode Radioecology problems tailing pond Koshkar-ATA View project nuclear physics View project. Article in Eurasian Journal of Physics and Functional Materials.

Liu, Y., Ning, Z., Chen, Y., Guo, M., Liu, Y., Gali, N. K., … Lan, K. (2020). Aerodynamic Characteristics and RNA Concentration of SARS-CoV-2 Aerosol in Wuhan Hospitals during COVID-19 Outbreak. BioRxiv, 2020.03.08.982637.

Lotfi, M., Hamblin, M. R., & Rezaei, N. (2020). COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clinica Chimica Acta, Vol. 508, pp. 254–266. Elsevier B.V.

Lu, Y., Zhu, B., Cai, Y., Kim, J.-S., Wang, B., Wang, J., … Li, J. (2016). Progress in Electrolyte-Free Fuel Cells. Frontiers in Energy Research, 4(MAY), 1.

Morales, M., Roa, J. J., Tartaj, J., & Segarra, M. (2016). A review of doped lanthanum gallates as electrolytes for intermediate temperature solid oxides fuel cells: From materials processing to electrical and thermo-mechanical properties. Journal of the European Ceramic Society, Vol. 36, pp. 1–16. Elsevier Ltd.

Nayak, N., Ghosh, A., Bhatta, D. R., & Gharti Magar, D. (2020). COVID-19: a brief review. Journal of Pathology of Nepal, 10(1), 1659–1662.

Nazir, H., Muthuswamy, N., Louis, C., Jose, S., Prakash, J., Buan, M. E. M., … M. Kannan, A. (2020). Is the H2 economy realizable in the foreseeable future? Part III: H2 usage technologies, applications, and challenges and opportunities. International Journal of Hydrogen Energy, Vol. 45, pp. 28217–28239. Elsevier Ltd.

Paules, C. I., Marston, H. D., & Fauci, A. S. (2020). Coronavirus Infections-More Than Just the Common Cold. JAMA - Journal of the American Medical Association, Vol. 323, pp. 707–708. American Medical Association.

Radenahmad, N., Azad, A. T., Saghir, M., Taweekun, J., Bakar, M. S. A., Reza, M. S., & Azad, A. K. (2020). A review on biomass derived syngas for SOFC based combined heat and power application. Renewable and Sustainable Energy Reviews, Vol. 119, p. 109560. Elsevier Ltd.

Ruiz-Morales, J. C., Marrero-López, D., Canales-Vázquez, J., & Irvine, J. T. S. (2011). Symmetric and reversible solid oxide fuel cells. RSC Advances, Vol. 1, pp. 1403–1414. The Royal Society of Chemistry.

Sammes, N. M., Galloway, K., Serincan, M. F., Suzuki, T., Yamaguchi, T., Awano, M., & Colella, W. (2012). Solid oxide fuel cells. In Handbook of Climate Change Mitigation (Vol. 4, pp. 1703–1727). Springer US.

Sarfraz, A., Raza, A. H., Mirzaeian, M., Abbas, Q., & Raza, R. (2020). Electrode Materials for Fuel Cells. In Reference Module in Materials Science and Materials Engineering. Elsevier.

Satuan Tugas Penanganan COVID-19. (2020). Peta Sebaran COVID-19 | Satgas Penanganan COVID-19. Retrieved December 30, 2020, from

Schlom, D. G., Chen, L. Q., Pan, X., Schmehl, A., & Zurbuchen, M. A. (2008). A thin film approach to engineering functionality into oxides. Journal of the American Ceramic Society, 91(8), 2429–2454.

Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: Current knowledge. Virology Journal, Vol. 16, pp. 1–22. BioMed Central Ltd.

Su, C., Wang, W., Liu, M., Tadé, M. O., & Shao, Z. (2015). Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes. Advanced Energy Materials, 5(14), 1500188.

Sun, C., Hui, R., & Roller, J. (2010). Cathode materials for solid oxide fuel cells: A review. Journal of Solid State Electrochemistry, 14(7), 1125–1144.

Tilley, R. J. D. (2016). Perovskites: Structure-Property Relationships . In John Wiley & Sons Ltd. United Kingdom: John Wiley & Sons Ltd. Retrieved from

Wang, S. Z. (2004). High Performance Fuel Cells Based on LaGaO3 Electrolytes. Acta Physico - Chimica Sinica, 20(1), 43–46.

Yi, Y., Lagniton, P. N. P., Ye, S., Li, E., & Xu, R. H. (2020). COVID-19: What has been learned and to be learned about the novel coronavirus disease. International Journal of Biological Sciences, 16(10), 1753–1766.



  • There are currently no refbacks.

Copyright (c) 2021 Jambura Journal of Chemistry


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.