Implementasi Algoritma SLAM pada Prototipe Robot Pemotong Rumput (Lawn Mower) menggunakan Raspberry Pi
Abstract
Pemotongan rumput secara manual masih sering dilakukan oleh sebagian pemilik pekarangan atau ladang rumput yang luas sehingga menimbulkan kebosanan dan kelelahan. Kegiatan pemotongan rumput ini juga membutuhkan banyak waktu dan tenaga. Salah satu penemuan mesin pemotong rumput adalah mesin pemotong rumput gendong. Penemuan ini juga memiliki beberapa kelemahan seperti menimbulkan polusi udara dan suara yang sangat mengganggu masyarakat sekitar. Selain itu pemotongan manual ini juga merupakan pekerjaan yang monoton dan berbahaya. Robot pemotong rumput juga telah diperkenalkan dan tentunya memiliki biaya yang tinggi. Oleh karena itu, dalam penelitian ini kami berhasil membuat prototipe mesin pemotong rumput yang lebih ekonomis dari segi biaya, energi, dan polusi dengan memanfaatkan Raspberry Pi 3 sebagai mikrokontroler. Prototipe dirancang dengan panjang 24,5 cm dan lebar 22 cm serta dilengkapi dengan pisau mekanik pada bagian depan yang memiliki arah putaran ke bawah. Prototipe ini juga dilengkapi dengan sensor Infrared yang dapat mendeteksi pembatas area untuk menghindari tabrakan. Area pengujian adalah 2x2 meter tanpa hambatan di dalamnya. Jalur pemotongan telah ditentukan menggunakan algoritma SLAM dimana robot memotong rumput dengan jalur berbentuk S. Kami menunjukkan bahwa robot berjalan sesuai dengan algoritma dan memotong rumput dengan sempurna.
Manual grass cutting is still often done by some owners of large yards or fields which causes boredom and fatigue. This activity also requires a lot of time and effort. One of the inventions of the lawnmower is the carrying grass cutting the machine. This invention also has several drawbacks such as causing air pollution and noise which is very disturbing to the surrounding community, monotonous and dangerous work. The lawnmower robot has also been introduced with various programs set in it and of course, has a high cost. Therefore, in this research, we succeeded in making a prototype lawn mower that is more economical in terms of cost, energy, and pollution by utilizing the Raspberry Pi 3 as a microcontroller. The prototype is designed with a length of 24.5 cm and a width of 22 cm and is equipped with a mechanical knife on the front which has a downward rotation direction. The prototype is also equipped with an IR sensor that can detect area delimiters to avoid collisions. The test area is 2x2 meters without any obstacles in it. The mowing path has been determined using the SLAM algorithm wherein the robot cuts the grass in an S-shaped path. We show that the prototype robot runs according to the algorithm and cuts the grass perfectly. for further work it is necessary to apply a different algorithm that can detect any obstacles in the test area.
Keywords
Full Text:
PDFReferences
K. S. Wang and C. K. Huang, “Intelligent Robotic Lawn Mower Design,” in 2018 International Conference on System Science and Engineering, ICSSE 2018, 2018.
S. El-Ghoul, A. S. Hussein, M. S. A. Wahab, U. Witkowski, and U. Ruckert, “A Modified Multiple Depth First Search Algorithm for Grid Mapping Using Mini-Robots Khepera,” J. Comput. Sci. Eng., vol. 2, no. 4, pp. 321–338, Dec. 2008.
“(PDF) Search Methods in Motion Planning for Mobile Robots.” [Online]. Available: https://www.researchgate.net/publication/350514506_Search_Methods_in_Motion_Planning_for_Mobile_Robots. [Accessed: 16-Jun-2021].
TARJAN R, “Depth- first search and linear graph algorithms,” 1971, pp. 114–121.
S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards, “Artificial Intelligence A Modern Approach,” 1995.
Y. Misono, Y. Goto, Y. Tarutoko, K. Kobayashi, and K. Watanabe, “Development of laser rangefinder-based SLAM algorithm for mobile robot navigation,” in Proceedings of the SICE Annual Conference, 2007, pp. 392–396.
L. D’Alfonso, A. Griffo, P. Muraca, and P. Pugliese, “A SLAM algorithm for indoor mobile robot localization using an Extended Kalman filter and a segment based environment mapping,” in 2013 16th International Conference on Advanced Robotics, ICAR 2013, 2013.
S. Singh, V. K. Shetkar, F. Siddiqui, and D. Soman, “A novel hybrid navigation algorithm for autonomous robotic vacuum cleaners,” in 2017 6th International Conference on Computer Applications in Electrical Engineering - Recent Advances, CERA 2017, 2018, vol. 2018-January, pp. 491–496.
K. M. Hasan, Abdullah-Al-Nahid, and K. J. Reza, “Path planning algorithm development for autonomous vacuum cleaner robots,” in 2014 International Conference on Informatics, Electronics and Vision, ICIEV 2014, 2014.
Q. Chen, C. Zhang, H. Ni, X. Liang, H. Wang, and T. Hu, “Trajectory planning method of robot sorting system based on S-shaped acceleration/deceleration algorithm,” Int. J. Adv. Robot. Syst., vol. 15, no. 6, Nov. 2018.
“Pengenalan SLAM (Simultaneous Localization and Mapping) pada LIDAR | BINUS UNIVERSITY MALANG | Pilihan Universitas Terbaik di Malang.” [Online]. Available: https://binus.ac.id/malang/2019/01/pengenalan-slam-simultaneous-localization-and-mapping-pada-lidar/. [Accessed: 15-Jun-2021].
R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A Versatile and Accurate Monocular SLAM System,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1147–1163, Oct. 2015.
T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davison, “ElasticFusion: Dense SLAM without a pose graph,” in Robotics: Science and Systems, 2015, vol. 11.
C. H. Chen and K. T. Song, “Complete coverage motion control of a cleaning robot using infrared sensors,” in Proceedings of the 2005 IEEE International Conference on Mechatronics, ICM ’05, 2005, vol. 2005, pp. 543–548.
T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algorithms: A survey from 2010 to 2016,” IPSJ Transactions on Computer Vision and Applications, vol. 9. Springer, 2017.
M. Lamatenggo, P. T. Elektro, I. Wiranto, and W. Ridwan, “Perancangan Balancing Robot Beroda Dua Dengan Metode Pengendali PID Berbasis Arduino Nano,” Jambura J. Electr. Electron. Eng., vol. 2, no. 2, pp. 39–43, Jul. 2020.
DOI: https://doi.org/10.37905/jjeee.v4i1.10934
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Published by:
Electrical Engineering Department
Faculty of Engineering
State University of Gorontalo
Jenderal Sudirman Street No.6, Gorontalo City, Gorontalo Province, Indonesia
Telp. 0435-821175; 081340032063
Email: redaksijjeee@ung.ac.id/redaksijjeee@gmail.com
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.