Peningkatan Performa Sel Surya Dengan Sistem Peredam Panas

soni prayogi, Fitria Silviana, Zainuddin Zainuddin


Dalam studi ini, kami menyaajikan investigasi eksperimental terhadap kinerja sel surya yang digabungkan dengan peredam panas. Pengaturan eksperimental dalam ruangan dirancang dan dirakit untuk menyelidiki dampak penggunaan sistem pendingin peredam panas pada kinerja sel surya. Lampu halogen digunakan untuk mensimulasikan radiasi matahari dan penelitian dilakukan pada nilai radiasi matahari yang berbeda. Selain itu, penelitian dilakukan pada udara alami dan paksa untuk mendinginkan peredam panas. Hasil penelitian menunjukkan bahwa penggunaan sistem pendingin peredam panas meningkatkan kinerja sel surya. Suhu sel surya menurun sekitar 5,4 % dan 11 % masing-masing dengan menggunakan sistem pendingin peredam panas pada udara alami dan udara paksa di atas peredam panas. Selain itu, efisiensi dan daya sistem sel surya meningkat sekitar 16% saat sistem pendingin peredam panas digunakan.

In this study, we conducted an experimental investigation of the performance of a solar cell coupled with a heat sink in a relatively simple system. An indoor experimental setup was designed and assembled to investigate the impact of using a heat sink cooling system on the performance of solar cell performance. Halogen lamps are used to simulate solar radiation and research is carried out on the value of solar radiation which varies from the highest wavelength to the lowest wavelength. In addition, research was carried out on natural and forced air to cool the heat sink. The results showed that the use of a heat dissipation cooling system increases the performance of solar cells. The temperature of the solar cell was decreased by about 5.4 % and 11 % respectively by using natural air and forced air to overheat sink cooling systems. We believe the efficiency and power of the solar cell system increase by about 16% when a heat dissipation cooling system is used. 


Sel surya; Peredam panas; Sirip; Pendingin Kinerja

Full Text:



S. Prayogi, Y. Cahyono, I. Iqballudin, M. Stchakovsky, and D. Darminto, “The effect of adding an active layer to the structure of a-Si: H solar cells on the efficiency using RF-PECVD,” J. Mater. Sci. Mater. Electron., vol. 32, no. 6, pp. 7609–7618, Mar. 2021, doi: 10.1007/s10854-021-05477-6.

N. A. Handayani and D. Ariyanti, “Potency of Solar Energy Applications in Indonesia,” Int. J. Renew. Energy Dev., vol. 1, no. 2, pp. 33–38, Jul. 2012, doi: 10.14710/ijred.1.2.33-38.

D. Hamdani, S. Prayogi, Y. Cahyono, G. Yudoyono, and D. Darminto, “The influences of the front work function and intrinsic bilayer (i1, i2) on p-i-n based amorphous silicon solar cell’s performances: A numerical study,” Cogent Eng., vol. 9, no. 1, p. 2110726, Dec. 2022, doi: 10.1080/23311916.2022.2110726.

S. Irvine, “Solar Cells and Photovoltaics,” in Springer Handbook of Electronic and Photonic Materials, S. Kasap and P. Capper, Eds. Boston, MA: Springer US, 2007, pp. 1095–1106. doi: 10.1007/978-0-387-29185-7_46.

A. D. Dhass, Y. Prakash, and K. C. Ramya, “Effect of temperature on internal parameters of solar cell,” Mater. Today Proc., vol. 33, pp. 732–735, Jan. 2020, doi: 10.1016/j.matpr.2020.06.079.

A. Q. Malik, C. C. Hah, C. S. Khwang, L. C. Ming, and T. K. Sheng, “Characterisation of multicrystalline solar cells,” ASEAN J. Sci. Technol. Dev., vol. 23, no. 1–2, Art. no. 1–2, 2006, doi: 10.29037/ajstd.96.

D. Ahuja and M. Tatsutani, “Sustainable energy for developing countries,” SAPIENS Surv. Perspect. Integrating Environ. Soc., no. 2.1, Art. no. 2.1, Apr. 2009, Accessed: Nov. 16, 2022. [Online]. Available:

E. Delyannis and V. Belessiotis, “Solar Water Desalination☆,” in Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2013. doi: 10.1016/B978-0-12-409548-9.01492-5.

J. Machacek, Z. Prochazka, and J. Drapela, “System for measuring and collecting data from solar-cell systems,” in 2007 9th International Conference on Electrical Power Quality and Utilisation, Oct. 2007, pp. 1–4. doi: 10.1109/EPQU.2007.4424164.

S. Prayogi, “Studi Struktur Elektronik Sel Surya a-Si: H Lapisan Jamak Menggunakan Spektroskopi Elipsometri,” doctoral, Institut Teknologi Sepuluh Nopember, 2022. Accessed: Dec. 16, 2022. [Online]. Available:

T. K. Ghosh and M. A. Prelas, “Solar Energy,” in Energy Resources and Systems: Volume 2: Renewable Resources, T. K. Ghosh and M. A. Prelas, Eds. Dordrecht: Springer Netherlands, 2011, pp. 79–156. doi: 10.1007/978-94-007-1402-1_2.

S. C. Bhatia, “3 - Solar devices,” in Advanced Renewable Energy Systems, S. C. Bhatia, Ed. Woodhead Publishing India, 2014, pp. 68–93. doi: 10.1016/B978-1-78242-269-3.50003-6.

H. Messel and S. T. Butler, Eds., “Sunlight and Electrons,” in Solar Energy, Pergamon, 1975, pp. 277–292. doi: 10.1016/B978-0-08-019817-0.50027-6.

S. Prayogi, Y. Cahyono, and D. Darminto, “Electronic structure analysis of a-Si: H p-i1-i2-n solar cells using ellipsometry spectroscopy,” Opt. Quantum Electron., vol. 54, no. 11, p. 732, Sep. 2022, doi: 10.1007/s11082-022-04044-5.

J. Krautmann and J. Zhu, “Photovoltaic Solar Energy Systems: Market Trends In The United States,” Int. J. Appl. Power Eng. IJAPE, vol. 1, no. 3, Art. no. 3, Dec. 2012, doi: 10.11591/ijape.v1.i3.pp123-128.

L. Ardhenta and W. Wijono, “Photovoltaic Array Modeling under Uniform Irradiation and Partial Shading Condition,” Int. J. Appl. Power Eng. IJAPE, vol. 6, no. 3, Art. no. 3, Dec. 2017, doi: 10.11591/ijape.v6.i3.pp142-149.

A. G. Djafar and Y. Mohamad, “Method to assess the potential of photovoltaic panel based on roof design,” Int. J. Appl. Power Eng. IJAPE, vol. 11, no. 3, Art. no. 3, Sep. 2022, doi: 10.11591/ijape.v11.i3.pp186-198.

M. Venkateshkumar and R. Raghavan, “Hybrid Photovoltaic and Wind Power System with Battery Management System Using Fuzzy Logic Controller,” Int. J. Appl. Power Eng. IJAPE, vol. 5, no. 2, Art. no. 2, Aug. 2016, doi: 10.11591/ijape.v5.i2.pp72-78.

K. A. Prior, “SEMICONDUCTOR PHYSICS | Impurities and Defects,” in Encyclopedia of Modern Optics, R. D. Guenther, Ed. Oxford: Elsevier, 2005, pp. 442–450. doi: 10.1016/B0-12-369395-0/00624-2.

S. Prayogi, Y. Cahyono, and Darminto, “Fabrication of solar cells based on a-Si: H layer of intrinsic double (P-ix-iy-N) with PECVD and Efficiency analysis,” J. Phys. Conf. Ser., vol. 1951, no. 1, p. 012015, Jun. 2021, doi: 10.1088/1742-6596/1951/1/012015.

S. Kasap, C. Koughia, J. Singh, H. Ruda, and S. OʼLeary, “Optical Properties of Electronic Materials: Fundamentals and Characterization,” in Springer Handbook of Electronic and Photonic Materials, S. Kasap and P. Capper, Eds. Boston, MA: Springer US, 2007, pp. 47–77. doi: 10.1007/978-0-387-29185-7_3.

L. Micheli, K. S. Reddy, and T. K. Mallick, “Plate Micro-fins in Natural Convection: An Opportunity for Passive Concentrating Photovoltaic Cooling,” Energy Procedia, vol. 82, pp. 301–308, Dec. 2015, doi: 10.1016/j.egypro.2015.12.037.

C. G. Popovici, S. V. Hudişteanu, T. D. Mateescu, and N.-C. Cherecheş, “Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks,” Energy Procedia, vol. 85, pp. 425–432, Jan. 2016, doi: 10.1016/j.egypro.2015.12.223.

P. Gokhale, B. Loganathan, A. Date, and A. Date, “Theoretical and Experimental Study to Determine the Solar Concentration Limit with Passive Cooling of Solar Cells,” Energy Procedia, vol. 110, pp. 286–291, Mar. 2017, doi: 10.1016/j.egypro.2017.03.141.

R. Rabie, H. Hassan, S. Ookawara, and M. Ahmed, “Performance enhancement of the concentrated photovoltaic using different phase change material configurations,” Energy Procedia, vol. 141, pp. 61–65, Dec. 2017, doi: 10.1016/j.egypro.2017.11.012.

R. D. Dako and W. Ridwan, “Pengujian karakteristik Functional Suitability dan Performance Efficiency,” Jambura J. Electr. Electron. Eng., vol. 3, no. 2, Art. no. 2, Jul. 2021, doi: 10.37905/jjeee.v3i2.10787.

S. Prayogi et al., “Observation of resonant exciton and correlated plasmon yielding correlated plexciton in amorphous silicon with various hydrogen content,” Sci. Rep., vol. 12, no. 1, Art. no. 1, Dec. 2022, doi: 10.1038/s41598-022-24713-5.

D. Darminto et al., “Unrevealing tunable resonant excitons and correlated plasmons and their coupling in new amorphous carbon-like for highly efficient photovoltaic devices,” Sci. Rep., vol. 13, no. 1, Art. no. 1, May 2023, doi: 10.1038/s41598-023-31552-5.

S. Prayogi, A. Ayunis, Y. Cahyono, and D. Darminto, “N-type H2-doped amorphous silicon layer for solar-cell application,” Mater. Renew. Sustain. Energy, Apr. 2023, doi: 10.1007/s40243-023-00232-9

R. S. Poliyama, F. E. P. Surusa, and R. K. Abdullah, “Rancang Bangun Alat Sistem Monitor Lampu Jalan Umum Tenaga Surya Berbasis Teknologi Lo - Ra,” Jambura J. Electr. Electron. Eng., vol. 3, no. 2, Art. no. 2, Jul. 2021, doi: 10.37905/jjeee.v3i2.10202.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Published by:
Electrical Engineering Department
Faculty of Engineering
State University of Gorontalo
Jenderal Sudirman Street No.6, Gorontalo City, Gorontalo Province, Indonesia
Telp. 0435-821175; 081340032063

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.