Enhancing the Efficiency of Jakarta's Mass Rapid Transit System with XGBoost Algorithm for Passenger Prediction
Abstract
Keywords
Full Text:
PDF (ENGLISH)References
Abdulrazzaq, L. R., Abdulkareem, M. N., Mat Yazid, M. R., Borhan, M. N., & Mahdi, M. S. (2020). Traffic congestion: the shift from private cars to public transportation. Civil Engineering Journal, 6(8), 1547–1554. doi: 10.28991/cej-2020-03091566
Azhar, H. N., Fatima, H. H. P., & Tamas, I. N. (2020). Preliminary study of Indonesia capital city relocation based on disaster mitigation principle with mental model approach. E3S Web of Conferences, 148, 06002. doi: 10.1051/e3sconf/202014806002
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. doi: 10.7717/peerj-cs.623
Data Penumpang MRT 2021 di Provinsi DKI Jakarta—Open Data Jakarta. (n.d.). Retrieved March 20, 2023, from https://data.jakarta.go.id/dataset/data-penumpang-mrt-2021-di-provinsi-dki-jakarta
Data Penumpang MRT di Provinsi DKI Jakarta—Open Data Jakarta. (n.d.). Retrieved March 20, 2023, from https://data.jakarta.go.id/dataset/data-penumpang-mrt-di-provinsi-dki-jakarta
Deng, A., Zhang, H., Wang, W., Zhang, J., Fan, D., Chen, P., & Wang, B. (2020). Developing computational model to predict protein-protein interaction sites based on the XGBoost algorithm. International Journal of Molecular Sciences, 21(7), doi: 10.3390/ijms21072274
Deng, X., Ye, A., Zhong, J., Xu, D., Yang, W., Song, Z., Zhang, Z., Guo, J., Wang, T., Tian, Y., Pan, H., Zhang, Z., Wang, H., Wu, C., Shao, J., & Chen, X. (2022). Bagging–XGBoost algorithm-based extreme weather identification and short-term load forecasting model. Energy Reports, 8, 8661–8674. doi: 10.1016/j.egyr.2022.06.072
Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021). A review on data preprocessing techniques toward efficient and reliable knowledge discovery from building operational data. Frontiers in Energy Research, 9, 652801. doi: 10.3389/fenrg.2021.652801
Febriani, D., Mega Olivia, C., Aniisah Sholilah, S., & Hidajat, M. (2020). Analysis of modal shift to support MRT-based urban transportation in Jakarta. Journal of Physics: Conference Series, 1573(1), 012015. doi: 10.1088/1742-6596/1573/1/012015
Majid, R. A., Said, R., Mohamad, N., Abdullah, J., & Ngah, R. (2020). The impact of time attribute on mass rapid transport (MRT) ridership in Malaysia. International Journal of Social Science Research, 2(4).
Paleczek, A., Grochala, D., & Rydosz, A. (2021). Artificial breath classification using XGBoost algorithm for diabetes detection. Sensors, 21(12), 4187. doi: 10.3390/s21124187
Pan, S., Zheng, Z., Guo, Z., & Luo, H. (2022). An optimized XGBoost method for predicting reservoir porosity using petrophysical logs. Journal of Petroleum Science and Engineering, 208, 109520. doi: 10.1016/j.petrol.2021.109520
Prakash, T. N., & Aloysius, A. (2019). Data preprocessing in sentiment analysis using twitter data. International Educational Applied Research Journal (IEAJR). 3 (7), 89–92.
Rachman, F. F., Nooraeni, R., & Yuliana, L. (2021). Public opinion of transportation integrated (Jak Lingko), in DKI Jakarta, Indonesia. Procedia Computer Science, 179, 696–703. doi: 10.1016/j.procs.2021.01.057
Ramana, A. V. (2022). Taxi demand prediction using ML. International Journal for Research in Applied Science and Engineering Technology, 10(6), 3811–3815. doi: 10.22214/ijraset.2022.43912
Ranganathan, G. (2021). A study to find facts behind preprocessing on deep learning algorithms. Journal of Innovative Image Processing, 3(1), 66–74. doi: 10.36548/jiip.2021.1.006
Shen, E. Z. (2022). Short-time cab speed prediction model based on XGBoost [Preprint]. In Review. doi: 10.21203/rs.3.rs-2200855/v1
Sinaga, S. M., Hamdi, M., Wasistiono, S., & Lukman, S. (2019). Model of implementing bus rapid transit (BRT) mass public transport policy in DKI Jakarta province, Indonesia. International Journal of Science and Society, 1(3). doi: 10.54783/ijsoc.v1i3.51
Solihati, K. D., & Indriyani, D. (2021). Managing artificial intelligence on public transportation (case study Jakarta city, Indonesia). IOP Conference Series: Earth and Environmental Science, 717(1), 012021. doi: 10.1088/1755-1315/717/1/012021
Tiong, K. Y., Ma, Z., & Palmqvist, C.-W. (2023). A review of data-driven approaches to predict train delays. Transportation Research Part C: Emerging Technologies, 148, 104027. doi: 10.1016/j.trc.2023.104027
Utami, D. L., Putri, A. L., Sutomo, A. H., & Ismara, K. I. (2022). Design of ergonomic emergency car toilet seats as a solution to severe traffic in Jakarta, Indonesia. 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). doi: 10.54941/ahfe1002004
Zhang, R., Li, B., & Jiao, B. (2019). Application of XGboost algorithm in bearing fault diagnosis. IOP Conference Series: Materials Science and Engineering, 490, 072062. doi: 10.1088/1757-899X/490/7/072062
Zhu, L., Shu, S., & Zou, L. (2022). XGBoost-based travel time prediction between bus stations and analysis of influencing factors. Wireless Communications and Mobile Computing, 2022, 1–25. doi: 10.1155/2022/3504704
DOI: https://doi.org/10.37905/jji.v5i1.18814
Refbacks
- There are currently no refbacks.
JJIhas been indexed by:
Editorial Office |
Engineering Faculty Building, 1st Floor Jl. Prof. Dr. Ing. B. J. Habibie, Bone Bolango, Gorontalo, 96119, Indonesia. Whatsapp: +6281314270499Email: jji.ft@ung.ac.id |
|
|