Penentuan Harga Opsi Dengan Volatilitas Stokastik Menggunakan Metode Monte Carlo

Chalimatusadiah Chalimatusadiah, Donny Citra Lesmana, Retno Budiarti

Abstract


ABSTRAK
Hal yang utama dalam perdagangan opsi adalah penentuan harga jual opsi yang optimal. Namun pada kenyataan sebenarnya fluktuasi harga aset yang terjadi di pasar menandakan bahwa volatilitas dari harga aset tidaklah konstan, hal ini menyebabkan investor mengalami kesulitan dalam menentukan harga opsi yang optimal. Artikel ini membahas tentang penentuan harga opsi tipe Eropa yang optimal dengan volatilitas stokastik menggunakan metode Monte Carlo dan pengaruh harga saham awal, harga strike, dan waktu jatuh tempo terhadap harga opsi Eropa. Adapun model volatilitas stokastik yang digunakan dalam penelitian ini adalah model Heston, yang mengasumsikan bahwa proses harga saham (St) mengikuti distribusi log-normal, dan proses volatilitas saham (Vt) mengikuti Proses Cox-Ingersoll-Ross. Hal pertama yang dilakukan dalam penelitian ini adalah mengestimasi parameter model Heston untuk mendapatkan harga saham dengan menggunakan metode ordinary least square dan metode numerik Euler-Maruyama. Langkah kedua adalah melakukan estimasi harga saham untuk mendapatkan harga opsi tipe Eropa menggunakan metode Monte Carlo. Hasil dari penelitian ini menunjukkan bahwa penggunaan metode Monte Carlo dalam penentuan harga opsi tipe Eropa dengan volatilitas stokastik model Heston menghasilkan solusi yang cukup baik karena memiliki nilai error yang kecil dan akan konvergen ke solusi eksaknya dengan semakin banyak simulasi. Selain itu, simulasi Monte Carlo memberikan kesimpulan bahwa parameter harga strike, harga saham awal dan waktu jatuh tempo memiliki pengaruh terhadap harga opsi yang konsisten dengan teori harga opsi. 

ABSTRACT

What is important in options trading is determining the optimal selling price. However, in real market conditions, fluctuations in asset prices that occur in the market indicate that the volatility of asset prices is not constant, this causes investors to experience difficulty in determining the optimal option price. This article discusses the optimal determination of the European type option price with stochastic volatility using the Monte Carlo method and the effect of the initial stock price, strike price, and expiration date on European option prices. The stochastic volatility model used in this study is the Heston model, which assumes that the stock price process (S) follows the normal log distribution, and the stock volatility process (V) follows the Ingersoll-Ross Cox Process. The first thing to do in this study is to estimate the parameters of the Heston model to get stock prices using the ordinary least square method and the Euler-Maruyama numerical method. The second step is to estimate the share price to get the European type option price using a Monte Carlo Simulation. This study indicates that using the Monte Carlo method in determining the price of European type options with the Heston model of stochastic volatility produces a fairly good solution because it has a small error value and will converge to the exact solution with more simulations. Also, the Monte Carlo simulation concludes that the parameters of the strike price, initial stock price, and maturity date influence the option price, which is consistent with the option price theory.


Keywords


Option value; Heston volatility model; Monte Carlo method

Full Text:

PDF [INDONESIA]

References


C. Oliveira, Options and Derivatives Programming in C ++. New Jersey (US): Apress, 2016.

J. C. Hull and S. Basu, Options, Futures, and Other Derivatives, 9th ed. India: Pearson India Education Services Pvt. Ltd, 2016.

P. Boyle and J. Mcdougall, Trading and Pricing Financial Derivatives. Boston (Berlin): Walter de Gruyter Inc, 2019.

F. Mostafa, T. Dillon, and E. Chang, Computational Intelligence Applications to Option Pricing , Volatility Forecasting and Value at Risk. Switzerland: Springer, 2017.

L. Andersen and R. Brotherton-Ratcliffe, “The equity option volatility smile: an implicit finite-difference approach,” J. Comput. Financ., vol. 1, no. 2, pp. 5–37, 1998, doi: 10.21314/jcf.1997.009.

S. L. Heston, “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options,” vol. 6, no. 2, pp. 327–343, 1993.

J. Hull and A. White, “The Pricing of Options on Assets with Stochastic Volatilities Od,” J. Finance, vol. XLII, no. 2, pp. 281–300, 1987.

T. J. Lyons, “Uncertain volatility and the risk-free synthesis of derivatives,” Appl. Math. Financ., vol. 2, no. 2, pp. 117–133, 1995, doi: 10.1080/13504869500000007.

M. Avellaneda, A. Levy, and A. Paras, “Pricing and hedging derivative securities in markets with uncertain volatilities,” Appl. Math. Financ., vol. 2, no. 2, pp. 73–88, 1995.

R. Crisóstomo, “An Analysis of the Heston Stochastic Volatility Model : Implementation and Calibration using Matlab *,” SSRN Electron. J, 2014.

G. Wang, X. Wang, and K. Zhou, “Pricing vulnerable options with stochastic volatility,” Physica A, 2017, doi: 10.1016/j.physa.2017.04.146.

A. Biswas, A. Goswami, and L. Overbeck, “Option pricing in a regime switching stochastic volatility model,” Stat. Probab. Lett., vol. 11, pp. 1–11, 2018, doi: 10.1016/j.spl.2018.02.056.

Y. Tian and H. Zhang, “European option pricing under stochastic volatility jump-diffusion models with transaction cost ✩,” Comput. Math. with Appl., pp. 1–20, 2019, doi: 10.1016/j.camwa.2019.12.001.

M. D. Moghaddam and R. A. Serota, “Combined multiplicative – Heston model for stochastic volatility,” Physica A, vol. 561, p. 125263, 2021, doi: 10.1016/j.physa.2020.125263.

M. Cerrato, The Mathematics of Derivatives Securities with Applications in MATLAB. Great Britain: John Wiley & Sons Ltd, 2012.

A. Barbu and S.-C. Zhu, Monte Carlo methods. Singapore: Springer, 2020.

J. Ma, W. Li, and H. Zheng, “Dual control Monte-Carlo method for tight bounds of value function under Heston stochastic volatility model,” Eur. J. Oper. Res., vol. 280, no. 2, pp. 428–440, 2020, doi: 10.1016/j.ejor.2019.07.041.

P. Glasserman, Monte Carlo Methods in Financial Engineering. New York: Springer, 2003.

I. Vidic, “Numerical methods for option pricing,” University of Werstern Cape, 2012.

X. Han and P. E. Kloeden, Probability Theory and Stochastic Modelling 85 Random Ordinary Differential Equations and Their Numerical Solution. Wuhan, Hubei China: Springer, 2017.

N. Schorghofer, Lessons in Scientific Computing. London: CRC Press, 2018.

J. W. Creswell, Educational Research, 4th ed. Boston: Pearson Education Inc, 2012.

D. Lamberton and G. Terenzi, “Variational formulation of American option prices in the Heston Model,” SIAM J. Financ. Math., vol. 10 (1), pp. 261–368, 2019.




DOI: https://doi.org/10.34312/jjom.v3i1.10137



Copyright (c) 2021 Chalimatusadiah Chalimatusadiah, Donny Citra Lesmana, Retno Budiarti

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.