Using k-Means and Self Organizing Maps in Clustering Air Pollution Distribution in Makassar City, Indonesia

Suwardi Annas, Uca Uca, Irwan Irwan, Rahmat Hesha Safei, Zulkifli Rais


Air pollution is an important environmental problem for specific areas, including Makassar City, Indonesia. The increase should be monitored and evaluated, especially in urban areas that are dense with vehicles and factories. This is a challenge for local governments in urban planning and policy-making to fulfill the information about the impact of air pollution. The clustering of starting points for the distribution areas can ease the government to determine policies and prevent the impact. The k-Means initial clustering method was used while the Self-Organizing Maps (SOM) visualized the clustering results. Furthermore, the Geographic Information System (GIS) visualized the results of regional clustering on a map of Makassar City. The air quality parameters used are Suspended Particles (TSP), Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), Carbon Monoxide (CO), Surface Ozone (O3), and Lead (Pb) which are measured during the day and at night. The results showed that the air contains more CO, and at night, the levels are reduced in some areas. Therefore, the density of traffic, industry and construction work contributes significantly to the spread of CO. Air conditions vary, such as high CO levels during the day and TSP at night. Also, there is a phenomenon at night that a group does not have SO2 and O3 simultaneously. The results also show that the integration of k-Means and SOM for regional clustering can be appropriately mapped through GIS visualization.


k-Means; Geographic Information Systems; Air Pollution; Self-Organizing Maps

Full Text:



S. K. Dash and A. K. Dash, “Determination of Air Quality Index Status near Bileipada, Joda Area of Keonjhar, Odisha, India,” Indian Journal of Science and Technology, vol. 8, no. 35, pp. 1–7, dec 2015, doi:

A. Kurniawan, “Pengukuran Parameter Kualitas Udara (CO, NO2, SO2, O3 dan PM10) di Bukit Kototabang Berbasis ISPU,” Jurnal Teknosains, vol. 7, no. 1, pp. 1–13, jul 2018, doi:

O. H. Adedeji, O. Oluwafunmilayo, and T.-A. O. Oluwaseun, “Mapping of Traffic-Related Air Pollution Using GIS Techniques in Ijebu-Ode, Nigeria,” Indonesian Journal of Geography, vol. 48, no. 1, pp. 73–83, aug 2016, doi:

S. N. Behera, M. Sharma, P. Mishra, P. Nayak, B. Damez-Fontaine, and R. Tahon, “Passive measurement of NO2 and application of GIS to generate spatially-distributed air monitoring network in urban environment,” Urban Climate, vol. 14, no. 3, pp. 396–413, dec 2015, doi:

R. Darmawan, “Analisis Resiko Kesehatan Lingkungan Kadar NO2 serta Keluhan Kesehatan Petugas Pemungut Karcis Tol,” Skripsi, Universitas Airlangga, 2018.

F. A. Farisi, B. Budiyono, and O. Setiani, “Pengaruh Sulfur Dioksida (SO2) pada Udara Ambien Terhadap Resiko Kejadian Pneumonia Pada Balita,” Jurnal Kesehatan Masyarakat, vol. 6, no. 4, pp. 439–446, 2018.

R. Johnson and D. Wichern, Applied Multivariate Statistical Analysis, 6th ed. New Jersey: Pearson Education, Inc., 2007.

M. Fujino and M. Yoshida, “Development and Validation of a Method of Forestry Region Classification Using PCA and Cluster Analysis together with the SOM Algorithm.” Journal of the Japanese Forest Society, vol. 88, no. 4, pp. 221–230, 2006, doi:

J. Hair, R. Anderson, R. Tatham, and W. Black, Applied Multivariate Statistical Analysis, 5th ed. New Jersey: Prentice-Hall, 1998.

B. Sartono, D. Bodro, and G. Dito, Teknik Eksplorasi Data yang Harus Dikuasi Data Scientist. Bogor: IPB Press, 2020.

A. Bastian, “Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka),” J. Sist. Inf., vol. 14, no. 1, pp. 28–34, 2018.

Y. Ardillah, H. Tjandrasa, and I. Arieshanti, “Deteksi Penyakit Epilepsi dengan Menggunakan Entropi Permutasi, K-Means Clustering, dan Multilayer Perceptron,” J. Tek. ITS, vol. 3, no. 1, pp. A70–A74, 2014, doi:

J. Siang, Jaringan Saraf Tiruan dan Pemrogramannya Menggunakan MATLAB. Yogyakarta: Andi Offset, 2005.

S. Annas, T. Kanai, and S. Koyama, “Principal Component Analysis and Self-Organizing Map for Visualizing and Classifying Fire Risks in Forest Regions,” Agricultural Information Research, vol. 16, no. 2, pp. 44–51, 2007, doi:

D. Klobucar and M. Subasic, “Using self-organizing maps in the visualization and analysis of forest inventory,” iForest - Biogeosciences and Forestry, vol. 5, no. 1, pp. 216–223, oct 2012, doi:

S. Annas and Z. Rais, “k-Means and GIS for Mapping Natural Disaster Prone Areas in Indonesia,” in Proceedings of the Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019, 12 October 2019, Bandung, West Java, Indonesia. EAI, 2020, pp. 1–7, doi:

M. N. DeMers, GIS For Dummies, 1st ed. Services LLC, 2009.

A. Kumar, I. Gupta, J. Brandt, R. Kumar, A. K. Dikshit, and R. S. Patil, “Air quality mapping using GIS and economic evaluation of health impact for Mumbai City, India,” Journal of the Air and Waste Management Association, vol. 66, no. 5, pp. 470–481, may 2016, doi:


Copyright (c) 2022 Suwardi Annas, Uca, Irwan, Rahmat Hesha Safei, Zulkifli Rais

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<

Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 

Editorial Office

Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia