The Commutation Matrices of Elements in Kronecker Quaternion Groups
Abstract
Keywords
Full Text:
PDFReferences
A. G. Kurosh, The Theory of Group, 2nd ed. American Mathematical Society, 2003.
S. Rahayu, M. Soviana, Y. ., and A. Nazra, “Some Properties of Representation of Quaternion Group,” KnE Engineering, vol. 1, no. 2, pp. 266–274, apr 2019, doi: http://dx.doi.org/10.18502/keg.v1i2.4451.
Y. Yanita, M. R. Helmi, and A. M. Zakiya, “Solvability Group From Kronecker Product on the Representation of Quaternion Group,” Asian Journal of Scientific Research, vol. 12, no. 2, pp. 293–297, mar 2019, doi: http://dx.doi.org/10.3923/ajsr.2019.293.297.
Yanita, “Other Properties and Presentation of Group from Kronecker Product on the Representation Quaternion Group,” Journal of Computational and Theoretical Nanoscience, vol. 17, no. 2, pp. 874–877, feb 2020, doi: http://dx.doi.org/10.1166/jctn.2020.8734.
A. Adrianda and Y. Yanita, “The first fundamental group of Kronecker quaternion group,” Journal of Physics: Conference Series, vol. 1524, no. 1, p. 12039, apr 2020, doi: http://dx.doi.org/10.1088/1742-6596/1524/1/012039.
A. M. Zakiya, Y. Yanita, and I. M. Arnawa, “Pictures on the second homotopy module of the group from Kronecker product on the representation quaternion group,” Journal of Physics: Conference Series, vol. 1524, no. 1, p. 12038, apr 2020, doi: http://dx.doi.org/10.1088/1742-6596/1524/1/012038.
K. Wang and P. Davis, “Group matrices for the quaternion and generalized dihedral groups,” Computers and Mathematics with Applications, vol. 12, no. 5-6, pp. 1297–1301, sep 1986, doi: http://dx.doi.org/10.1016/0898-1221(86)90254-3.
Ahsan, Y. Yanita, and S. Bahri, “Properties of the matrix from Kronecker product on the representation of quaternion group,” Journal of Physics: Conference Series, vol. 1943, no. 1, p.12125, jul 2021, doi: http://dx.doi.org/10.1088/1742-6596/1943/1/012125.
D. A. Harville, Matrix Algebra from a statistician’s Perpective. New York: Springer, 2008.
J. A. Galian, Contemporary Abstract Algebra, 7th ed. Belmon, CA: Brooks/Cole, Cengage Learning, 2010.
R. Piziak and P. L. Odell, Matrix Theory: From Generalized Inverses to Jordan Form. New York: Chapmann and Hall/CRC, 2007.
C. Xu, L. He, and Z. Lin, “Commutation matrices and commutation tensors,” Linear and Multilinear Algebra, vol. 68, no. 9, pp. 1721–1742, sep 2020, doi: http://dx.doi.org/10.1080/03081087.2018.1556242.
H. Zhang and F. Ding, “On the Kronecker Products and Their Applications,” Journal of Applied Mathematics, vol. 2013, pp. 1–8, 2013, doi: http://dx.doi.org/10.1155/2013/296185.
J. R. Magnus and H. Neudecker, “The Commutation Matrix: Some Properties and Applications,” The Annals of Statistics, vol. 7, no. 2, pp. 381–394, 1979.
J. R. Magnus and H. Neudecker, Matrix Diffrential Calculus with Applications in Statistics and Econometrics. New Jersey: John Wiley and Sons, Inc., 2007.
DOI: https://doi.org/10.34312/jjom.v4i1.12004
Copyright (c) 2022 Yanita Yanita, Eka Purwanti, Lyra Yulianti
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jambura Journal of Mathematics has been indexed by
Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS.
Editorial Office
Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.