Metode Reversible Self-Dual untuk Konstruksi Kode DNA atas Lapangan Hingga GF(4)

Juli Loisiana Butar-Butar, Misa Br. Bukit

Abstract


The DNA molecule chain consists of two complementary strands composed of a sequence of four nucleotide bases, namely adenine (A), cytosine (C), guanine (G) and thymine (T). DNA code is a set of codewords with a fixed length of the alphabet {A, C, T, G}. DNA coding is one application of coding theory over a finite field. The set {A, C, T, G} is identified as finite field GF(4) = {0, 1, w, w2} with w2 + w + 1 = 0. The reversible self-dual (RSD) code over the finite field GF(4) is a code whose dual is itself and the reverse of each codeword contained in the code. This study aims to obtain an algorithm to construct a DNA code derived from the RSD C code on the field to GF(4) which is called the Reversible Self-Dual Method. The aspects studied include the characteristics that form the basis properties of the theory in compiling the DNA code algorithm over the RSD code over GF(4). The compiled algorithm is a DNA code construction method of codeword length even that conforms to the Hamming distance constraint, reverse-complement constraint, and GC-content constraint. The input of the algorithm is a generator matrix of RSD code C with a minimum distance of d and the output is a DNA code that satisfies these three constraints.

Keywords


DNA Kode; Finite Field GF(4); Reversible Self-Dual Code

Full Text:

PDF

References


D. Limbachiya, B. Rao, and M. K. Gupta, “The Art of DNA Strings: Sixteen Years of DNA Coding Theory,” Arxiv Cornel University, vol. 1607.00266, pp. 1–19, 2016.

X. Wang and C. Liu, “A novel and effective image encryption algorithm based on chaos and DNA encoding,” Multimedia Tools and Applications, vol. 76, no. 5, pp. 6229–6245, mar 2017, doi: http://dx.doi.org/10.1007/s11042-016-3311-8.

P. Gaborit and O. D. King, “Linear constructions for DNA codes,” Theoretical Computer Science, vol. 334, no. 1-3, pp. 99–113, apr 2005, doi: http://dx.doi.org/10.1016/j.tcs.2004.11. 004.

I. Aisah, E. Kurniadi, and E. Carnia, “Representasi Mutasi Kode Genetik Standar Berdasarkan Basa Nukleotida,” Jurnal Matematika Integratif, vol. 11, no. 1, pp. 25–34, apr 2015, doi: http://dx.doi.org/10.24198/jmi.v11.n1.9399.25-34.

B. Feng, S. Bai, B. Chen, and X. Zhou, “The Constructions of DNA Codes from Linear Self-Dual Codes over Z4,” in International Conference on Computer Information Systems and Industrial Applications, 2015, pp. 496–498, doi: http://dx.doi.org/10.2991/cisia-15.2015.135.

H. K. Kim, D. K. Kim, and J. L. Kim, “Type I Codes over GF(4),” Ars Comb., vol. 106, no. 4, pp. 173–191, 2012.

T. Todorov and Z. Varbanov, “DNA codes based on additive self-dual codes over GF (4),” in

th Int. Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 2013, pp. 170–175.

Z. Varbanov, T. Todorov, and M. Hristova, “A Method for Constructing Dna Codes from Additive Self-Dual Codes over GF(4),” ROMAI J., vol. 10, no. 2, pp. 203–211, 2014.

E. S. Oztas and I. Siap, “On a generalization of lifted polynomials over finite fields and their applications to DNA codes,” International Journal of Computer Mathematics, vol. 92, no. 9, pp. 1976–1988, sep 2015, doi: http://dx.doi.org/10.1080/00207160.2014.930449.

S. Oztas and I. Siap, “Lifted polynomials over F16 and their applications to DNA codes,” Filomat, vol. 27, no. 3, pp. 459–466, 2013, doi: http://dx.doi.org/10.2298/FIL1303459O.

H. Hong, L. Wang, H. Ahmad, J. Li, Y. Yang, and C. Wu, “Construction of DNA codes by using algebraic number theory,” Finite Fields and Their Applications, vol. 37, pp. 328–343, jan 2016, doi: http://dx.doi.org/10.1016/j.ffa.2015.10.008.

D. H. Smith, N. Aboluion, R. Montemanni, and S. Perkins, “Linear and nonlinear constructions of DNA codes with Hamming distance d and constant GC-content,” Discrete Mathematics, vol. 311, no. 13, pp. 1207–1219, jul 2011, doi: http://dx.doi.org/10.1016/j.disc.2010.03.005.

J. H. van Lint, Introduction to Coding Theory, ser. Graduate Texts in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, vol. 86, doi: http://dx.doi.org/10.1007/ 978-3-662-00174-5.

M. Kelbert and Y. Suhov, Information Theory and Coding by Example. Cambridge: Cambridge University Press, 2013, doi: http://dx.doi.org/10.1017/CBO9781139028448.

K. Guenda, “New MDS self-dual codes over finite fields,” Designs, Codes and Cryptography, vol. 62, no. 1, pp. 31–42, jan 2012, doi: http://dx.doi.org/10.1007/s10623-011-9489-x.

S. Ling and C. Xing, Coding Theory. Cambridge University Press, feb 2004, doi: http://dx.doi.org/10.1017/CBO9780511755279.

H. J. Kim, W.-H. Choi, and Y. Lee, “Construction of reversible self-dual codes,” Finite Fields and Their Applications, vol. 67, p. 101714, oct 2020, doi: http://dx.doi.org/10.1016/j.ffa.2020. 101714.

J. Doliskani and E´ . Schost, “Taking roots over high extensions of finite fields,” Mathematics of Computation, vol. 83, no. 285, pp. 435–446, may 2013, doi: HTTP: //dx.doi.org/10.1090/S0025-5718-2013-02715-9.

J. L. Butar-Butar and Y. B. P. Siringoringo, “Kode Siklik Berulang dari Kode Linear Fp atas Lapangan Hingga F( pl ) dengan l Bilangan Prima Tertentu,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 2, pp. 231–240, jun 2021, doi: http://dx.doi.org/10.30598/barekengvol15iss2pp231-240.

J. L. Butar-Butar, “Kode Self-Dual Siklik atas Ring Rantai Berhingga,” J. Curere, vol. 4, no. 1, pp. 60–66, 2020, doi: http://dx.doi.org/10.36764/jc.v4i1.347.

F. Gursoy, E. Segah Oztas, and I. Siap, “Reversible DNA codes over F16 + uF16 + vF16 + uvF16,” Advances in Mathematics of Communications, vol. 11, no. 2, pp. 307–312, 2017, doi: http://dx.doi.org/10.3934/amc.2017023.

H. J. Kim, W.-H. Choi, and Y. Lee, “Designing DNA codes from reversible self-dual codes over GF(4),” Discrete Mathematics, vol. 344, no. 1, p. 112159, jan 2021, doi: http://dx.doi.org/10.1016/j.disc.2020.112159.

S. Yang, X. Kong, and C. Tang, “A construction of linear codes and their complete weight enumerators,” Finite Fields and Their Applications, vol. 48, pp. 196–226, nov 2017, doi: http://dx.doi.org/10.1016/j.ffa.2017.08.001.




DOI: https://doi.org/10.34312/jjom.v4i2.13583



Copyright (c) 2022 Juli Loisiana Butar-Butar, Misa Br. Bukit

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.