Bifurkasi Pada Model Penyebaran Penyakit MERS-CoV di Dua Wilayah dengan Populasi Konstan
Abstract
Keywords
Full Text:
PDFReferences
J. S. Sabir, T. T.-Y. Lam, M. M. Ahmed, L. Li, Y. Shen, S. EM Abo-Aba, M. I. Qureshi, M. Abu-Zeid, Y. Zhang, M. A. Khiyami et al., “Co-circulation of three camel coronavirus species and recombination of mers-covs in saudi arabia,” Science, vol. 351, no. 6268, pp. 81–84, 2016, doi: http://dx.doi.org/10.1126/science.aac860.
C. B. Reusken, B. L. Haagmans, M. A. Muller, C. Gutierrez, G.-J. Godeke, B. Meyer, ¨D. Muth, V. S. Raj, L. Smits-De Vries, V. M. Corman et al., “Middle east respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study,” The Lancet infectious diseases, vol. 13, no. 10, pp. 859–866, 2013, doi: http://dx.doi.org/10.1016/S1473-3099(13)70164-6.
B. Fatima, G. Zaman, and F. Jarad, “Transmission dynamic and backward bifurcation of middle eastern respiratory syndrome coronavirus,” Nonlinear Analysis: Modelling and Control, vol. 27, no. 1, pp. 54–69, 2022, doi: 10.15388/namc.2022.27.25256.
I. Ghosh, S. S. Nadim, and J. Chattopadhyay, “Zoonotic mers-cov transmission: modeling, backward bifurcation and optimal control analysis,” Nonlinear dynamics, vol. 103, no. 3, pp. 2973–2992, 2021, doi: http://dx.doi.org/10.1007/s11071-021-06266-w.
WHO, “Middle East respiratory syndrome coronavirus (MERS-CoV),” 2019, url: https://www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers#tab=tab 1.
A. Omame, M. Abbas, and C. P. Onyenegecha, “Backward bifurcation and optimal control in a co-infection model for sars-cov-2 and zikv,” Results in Physics, p. 105481, 2022, doi: https://doi.org/10.1016/j.rinp.2022.105481.
S. S. Musa, I. A. Baba, A. Yusuf, T. A. Sulaiman, A. I. Aliyu, S. Zhao, and D. He, “Transmission dynamics of sars-cov-2: A modeling analysis with high-and-moderate risk populations,” Results in physics, vol. 26, p. 104290, 2021, doi: https://doi.org/10.1016/j.rinp.2021.104290.
B. Yong and L. Owen, “Dynamical transmission model of mers-cov in two areas,” in AIP Conference Proceedings, vol. 1716, no. 1. AIP Publishing LLC, 2016, p. 020010, doi: http://dx.doi.org/10.1063/1.4942993.
F. Bertacchini, P. S. Pantano, and E. Bilotta, “Sars-cov-2 emerging complexity and global dynamics,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 31, no. 12, p. 123110, 2021, doi: http://dx.doi.org/10.1063/5.0062749.
M. Ayana, T. Hailegiorgis, and K. Getnet, “The impact of infective immigrants and self isolation on the dynamics and spread of covid-19 pandemic: A mathematical modeling study,” Pure and Applied Mathematics Journal, vol. 9, no. 6, pp. 109–117, 2020, doi: http://dx.doi.org/10.11648/j.pamj.20200906.12.
F. A. Rihan and V. Gandhi, “Dynamics and sensitivity of fractional-order delay differential model for coronavirus (covid-19) infection,” Dynamics, vol. 1, pp. 1–2021, 2021, doi: http://dx.doi.org/10.18576/pfda/070105.
E. Unlu, H. Leger, O. Motornyi, A. Rukubayihunga, T. Ishacian, and M. Chouiten, “Epidemic analysis of covid-19 outbreak and counter-measures in france,” 2020, doi: http://dx.doi.org/10.1101/2020.04.27.20079962.
P. Kumar, N. A. Rangaig, H. Abboubakar, A. Kumar, and A. Manickam, “Prediction studies of the epidemic peak of coronavirus disease in japan: From caputo derivatives to atangana–baleanu derivatives,” International Journal of Modeling, Simulation, and Scientific Computing, vol. 13, no. 01, p. 2250012, 2022, doi: https://doi.org/10.1142/S179396232250012X.
A. Sasmal and C. Ray, “A genome based detection and classification of coronavirus infection,” International Journal Of Engineering And Computer Science, vol. 9, no. 08, 2020, doi: https://doi.org/10.18535/ijecs/v9i08.4522.
H. Abboubakar, A. K. Guidzava¨ı, J. Yangla, I. Damakoa, and R. Mouangue, “Mathematical modeling and projections of a vector-borne disease with optimal control strategies: A case study of the chikungunya in chad,” Chaos, Solitons & Fractals, vol. 150, p. 111197, 2021, doi: https://doi.org/10.1016/j.chaos.2021.111197.
L. Owen and J. M. Tuwankotta, “Computation of fold and cusp bifurcation points in a system of ordinary differential equations using the lagrange multiplier method,” International Journal of Dynamics and Control, vol. 10, no. 2, pp. 363–376, 2022, doi: http://dx.doi.org/10.1007/s40435-021-00821-4.
DOI: https://doi.org/10.34312/jjom.v4i2.14190
Copyright (c) 2022 Livia Owen
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jambura Journal of Mathematics has been indexed by
Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS.
Editorial Office
Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.