Analisis Autokorelasi Spasial Global dan Lokal Pada Data Kemiskinan Provinsi Bali

Windy Lestari, Adika Setia Brata, Alfian Anhar, Suci Rahmawati

Abstract


Poverty is a crucial problem that often occurs in Indonesia, including in the province of Bali. The poverty rate rate in Bali has increased significantly over the last 3 years, so further analysis is needed so that this poverty rate can be reduced. The pattern of poverty between regions is different because it depends on the geographical and socio-cultural conditions in each area. The effect of location on poverty cases can be identified by global and local spatial autocorrelation methods. This study aimed to analyze the spatial autocorrelation of poverty data in Bali Province using the global autocorrelation test with the Moran’s and Geary’s C indices as well as the local spatial autocorrelation test with the Local Indicator of Spatial Association (LISA) and Getis-Ord G to obtain an overview of the spatial distribution of poverty data. Based on the global autocorrelation test, it is concluded that using Moran’s index there is a negative spatial autocorrelation in the 2020-2022 data for a=10%. Similar results were also obtained when using the Geary’s C test. In the local autocorrelation test using LISA, it was found that districts had negative spatial autocorrelation, namely in 2020 Buleleng Regency (high-low) and Klungkung (low-low), for 2021 there is Buleleng Regency (high-low) and Jembrana (low-low), while for 2022 only Buleleng Regency (high-low) has negative spatial autocorrelation. For local autocorrelation testing with the Getis-Ord G test, it was found that there were no districts/cities that showed spatial grouping or that there was no spatial autocorrelation locally.

Keywords


Geary’s C; Getis-Ord G; Index Moran’s; Poverty; Spatial Autocorrelation; LISA

Full Text:

PDF

References


S. Hasibuan and M. H. Hasibuan, “Pemetaan Efek Spasial Kemiskinan Seluruh Kabupaten Di Indonesia,” Reksabumi, vol. 1, no. 1, pp. 17–31, dec 2021, doi: 10.33830/Reksabumi.v1i1.2058.2022.

BPS (Badan Pusat Statistik), Data dan Informasi Kemiskinan Kabupaten/Kota Tahun 2017. Jakarta: Badan Pusat Statistik, 2017, [Online]. Available at: https://www.bps.go.id/publication/2018/04/06/69f8e023485fcd4893164bbf/data-dan-informasi-kemiskinan-kabupaten-kota-tahun-2017.html.

E. H. Pratiwi and N. Malik, “Analisis Pengaruh Pertumbuhan Ekonomi, Tingkat Pendidikan dan Kesehatan Terhadap Jumlah Penduduk Miskin di Bali Tahun 2011-2020,” Jurnal Ilmu Ekonomi JIE, vol. 6, no. 1, pp. 112–122, feb 2022, doi: 10.22219/jie.v6i1.19670.

BPS (Badan Pusat Statistik), Data Jumlah Penduduk Miskin Provinsi Bali. Jakarta: Badan Pusat Statistik, 2022, [Online]. Available at: https://bali.bps.go.id/indicator/23/261/1/jumlah-penduduk-miskin-provinsi-bali-menurut-kabupaten-kota.html.

R. H. Bangun and D. W. Triscowati, “Identifikasi Autokorelasi Spasial Indeks Kedalaman Kemiskinan Dan Indeks Keparahan Kemiskinan Di Provinsi Aceh,” Jurnal Ilmiah Parameter, vol. 4, no. 8, pp. 81–93, 2019.

A. Simatauw, E. Sediyono, and S. Y. J. Prasetyo, “Autokorelasi Spasial Untuk Analisis Pola Pengawasan Kawasan Lindung Di Kota Ambon Maluku,” Teknika, vol. 8, no. 1, pp. 36–43, jun 2019, doi: 10.34148/teknika.v8i1.144.

N. Fat’Ha and H. T. Sutanto, “Identifikasi Autokorelasi Spasial Pada Pengangguran Di Jawa Timur Menggunakan Indeks Moran,” MATHunesa: Jurnal Ilmiah Matematika, vol. 8, no. 2, pp. 89–92, may 2020, doi: 10.26740/mathunesa.v8n2.p89-92.

S. Maisaroh, Pengujian Autokorelasi Spasial Angka Putus Sekolah dengan Getis Ord G. Skripsi: UIN Maulana Malik Ibrahim, 2020.

F. T. Sarita, A. Setiawan, and H. A. Parhusip, “Analisis Indeks Pembangunan Manusia (IPM) Kabupaten/Kota di Provinsi Maluku Utara Menggunakan Indeks Geary C Berdasarkan Resampling Estimasi Densitas Kernel,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 5, no. 1, pp. 62–72, may 2019, doi: 10.28932/jutisi.v5i1.1582.

D. A. Novitasari, “Spatial Pattern Analysis Dan Spatial Autocorrelation Produk Domestik Regional Bruto (Pdrb) Sektor Industri Untuk Menggambarkan Perekonomian Penduduk Di Jawa Timur,” Jurnal Ekbis, vol. 13, no. 1, pp. 629–637, mar 2015, doi: 10.30736/ekbis.v13i1.113.

E. K. Nisa, “Identifikasi Spatial Pattern dan Spatial Autocorrelation pada Indeks Pembangunan Manusia Provinsi Papua Barat Tahun 2012,” At-Taqaddum, vol. 9, no. 2, pp. 202–226, jan 2018, doi: 10.21580/at.v9i2.1914.

R. Mailanda, D. Kusnandar, and N. M. Huda, “Analisis Autokorelasi Spasial Kasus Positif Covid-19 menggunakan Indeks Moran dan Lisa,” Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 11, no. 3, pp. 483–492, 2022, doi: 10.26418/bbimst.v11i3.55447.

P. Jinghu, L. Junfeng, and C. Yibo, “Quantitative Geography Analysis on Spatial Structure of A-Grade Tourist Attractions in China,” Journal of Resources and Ecology, vol. 6, no. 1, pp. 12–20, jan 2015, doi: 10.5814/j.issn.1674-764x.2015.01.002.

I. R. Akolo, “Perbandingan Matriks Pembobot Rook dan Queen Contiguity dalam Analisis Spatial Autoregressive Model (SAR) dan Spatial Error Model (SEM),” Jambura Journal of Probability and Statistics, vol. 3, no. 1, pp. 11–18, may 2022, doi: 10.34312/jjps.v3i1.13582.

S. Sukarna, W. Sanusi, and H. Hafilah, “Analisis Autokorelasi Moran’s I, Geary’s C, GetisOrd G, dan LISA serta Penerapannya pada Penderita Kusta di Kabupaten Gowa,” J. Math. Comput. Stat., vol. 2, no. 2, pp. 1–11, 2017, [Online]. Available at: http://eprints.unm.ac.id/13321/.

A. Lutfi, M. K. Aidid, and S. Sudarmin, “Identifikasi Autokorelasi Spasial Angka Partisipasi Sekolah di Provinsi Sulawesi Selatan Menggunakan Indeks Moran,” J. Stat. Its Appl. Teach. Res., vol. 1, no. 2, pp. 1–8, 2019, doi: 10.35580/variansi.v1i2.9354.

Y. N. Yenusi, A. Setiawan, and L. Linawati, “Analisis Spasial berdasarkan Indeks Getis Ord Data Laju Inflasi Tahunan di Pulau Sumatra,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 1, pp. 61–71, apr 2020, doi: 10.28932/jutisi.v6i1.2317.




DOI: https://doi.org/10.34312/jjom.v5i1.18681



Copyright (c) 2023 Windy Lestari, Adika Setia Brata, Alfian Anhar, Suci Rahmawati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.


 

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor