Implementasi Penggunaan Generalisasi Thinning Process pada Penduga Fungsi Ragam Proses Poisson Periodik Majemuk

Syarif Abdullah, I Wayan Mangku, Himmatul Mursyidah, Mifathul Huda, Fajri Ikhsan, Sri Istiyarti Uswatun Chasanah

Abstract


This article implements the thinning process algorithm, which has been generalized for estimators of compound periodic Poisson processes. The use of generalizations in the algorithm has been prepared with a linear trend in the periodic elements. This research aims to discuss estimators of the variance function. The method used in this research is the simulation method. Simulation results using a generalized algorithm thinning process show that in the case of a limited observation time interval, some estimators are good enough to approach the actual value. As the value of n increases, the simulated value of the estimator moves towards the predicted value. This is following the lemmas, theorems, and consequences that have been discussed. It was also found that several estimators were quite slow. This results in the movement of the bias, variance, and MSE values of the estimators being slow, even though they are moving towards 0. So that further modifications can be made to the model being studied.

Keywords


Thinning Process; Poisson Process; Linear Trend; Periodic; Compound Poisson; Variance Function

Full Text:

PDF

References


F. Beichelt, Stochastic Processes in Science, Engineering and Finance. New York (US): Chapman & Hall/CRC, 2006.

K. Andrzejczak, M. Młyńczak, and J. Selech, “Poisson-distributed failures in the predicting of the cost of corrective maintenance,” Eksploat. i Niezawodn. Reliab., vol. 20, no. 4, pp. 602–609, 2018.

C. D. Pahlajani, I. Poulakakis, and H. G. Tanner, “Networked decision making for Poisson processes with application to nuclear detection,” IEEE Trans. Autom. Control, vol. 59, no. 1, pp. 193–198, 2014.

R. Helmers and I. W. Mangku, “Estimating the intensity of a cyclic Poisson process in the presence of linear trend,” Ann. Inst. Stat. Math, vol. 61, pp. 599–628, 2009.

I. W. Mangku, Ruhiyat, and I. G. P. Purnaba, “Statistical properties of an estimator for the mean function of a compound cyclic Poisson process,” Far East J. Math. Sci., vol. 82, no. 2, pp. 227–237, 2013.

Ruhiyat, I. W. Mangku, and I. G. P. Purnaba, “Consistent estimation of the mean function of a compound cyclic Poisson process,” Far East J. Math. Sci., vol. 77, no. 2, pp. 183–194, 2013.

F. I. Makhmudah, I. W. Mangku, and H. Sumarno, “Estimating the variance function of a compound cyclic Poisson process,” Far East J. Math. Sci., vol. 100, no. 6, pp. 911–922, 2016.

B. A. Wibowo, I. W. Mangku, and Siswadi, “Statistical properties of an estimator for the mean function of a compound cyclic Poisson process in the presence of linear trend,” Arab J. Math. Sci., vol. 23, no. 2, pp. 173–185, 2017.

S. Abdullah, I. W. Mangku, and Siswadi, “Estimating the variance function of a compound cyclic Poisson process in the presence of linear trend,” Far East J. Math. Sci., vol. 102, no. 3, pp. 559–572, 2017.

P. A. W. Lewis and G. S. Shedler, Simulation Poisson process by thinning. Naval Postgraduate School Montery. California (US): Calhoun, 1979.

S. M. Ross, Simulation, 5th ed. Amsterdam (NL): Academic Pr., 2012.

S. M. Ross, Introduction to Probability Models, 12th ed. Florida (US): Academic Pr., 2019.

S. Abdullah, F. Ikhsan, S. Ula, and Y. Rukmayadi, “Thinning process algorithms for compound Poisson process having nonhomogeneous Poisson process (NHPP) intensity functions,” in IOP Conf. Ser.: Mater. Sci. Eng, 2019, p. 673 (012062).

S. Abdullah, S. Susilo, S. Ula, W. Aswata, N. Valentika, and S. I. U. Chasanah, “Algoritma membangkitkan proses Poisson majemuk dengan komponen proses Poisson nonhomogen fungsi linear dan komponen berdistribusi eksponensial,” STATMAT J. Stat. dan Mat., vol. 2, no. 1, pp. 81–93, 2020.

S. Abdullah, S. Susilo, I. W. Mangku, F. Ikhsan, S. Ula, and Y. Rukmayadi, “Algorithm for generating compound Poisson process which has nonhomogeneous Poisson process and exponential distribution components,” in 1st International Multidisciplinary Conference on Education, Technology, and Engineering (IMCETE 2019), 2020, pp. 241–246.

S. Abdullah et al., “Generalisasi Algoritma Thinning Process pada Proses Poisson Majemuk dengan Komponen Proses Poisson Nonhomogen dan Distribusi Gamma,” MUST J. Math. Educ. Sci. Technol., vol. 5, no. 2, pp. 221–239, 2020.

J. H. Cha, “On a stochastic failure model under random shocks,” in Journal of Physics: Conference Series, 2013, p. 410 012108.

H. Soltanali, A. Rohani, M. Tabasizadeh, M. H. Abbaspour-Fard, and A. Parida, “Operational reliability evaluation-based maintenance planning for automotive production line,” Qual. Technol. Quant. Manag., vol. 17, no. 2, pp. 186–202, 2019.

Z. Zhang, W. Li, and J. Yang, “Analysis of stochastic process to model safety risk in construction industry,” J. Civ. Eng. Manag., vol. 27, no. 2, pp. 87–99, 2021.

J. M. Czaplicki, Statistics for Mining Engineering. London: CRC Press Taylor & Francis Group, 2014.

F. J. Samaniego, Stochastic Modeling and Mathematical Statistics: A Text for Statisticians and Quantitative Scientists. London: CRC Press Taylor & Francis Group, 2014.




DOI: https://doi.org/10.37905/jjom.v6i1.22491



Copyright (c) 2024 Syarif Abdullah, I Wayan Mangku, Himmatul Mursyidah, Mifathul Huda, Fajri Ikhsan, Sri Istiyarti Uswatun Chasanah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.