Prediksi Harga Saham Syariah menggunakan Bidirectional Long Short Term Memory (BiLSTM) dan Algoritma Grid Search

Dian Islamiaty Puteri, Gumgum Darmawan, Budi Nurani Ruchjana

Abstract


Sharia stocks are one of the investment instruments in the Islamic capital market. In the capital market, it is known that stock prices are very volatile. This makes investors need to carry out a strategy for making the right decision in investing, one of which can be done by predicting stock prices. In this study, predictions were made using historical data on the closing price of Islamic shares of PT. Telkom Indonesia Tbk with the Bidirectional Long Short Term Memory (BiLSTM) method. In building the best prediction model, it is necessary to choose the right parameters and one way to do this is to use the grid search algorithm. Based on the results of the test analysis, it was found that the smallest Mean Absolute Percentage Error (MAPE) value was found in the BiLSTM model in the distribution of data with a percentage of 90% training data and 10% testing data and parameter values obtained based on parameter tuning using grid search, including the number of neurons 25, 100 epochs, 4 batches, and 0.2 dropouts. The MAPE obtained in this study was 10.83% and based on the scale on the MAPE value criteria, this shows that the resulting prediction model is accurate. As for the test results from the comparisons made on the BiLSTM and LSTM models using grid search as a tuning parameter and models without using a grid search or it can be called a trial and error approach as a tuning parameter, it is found that the model with better predictive performance is found in BiLSTM using a grid search. compared to other models.

Keywords


BiLSTM; Grid Search; Sharia Stock Price; Prediction

Full Text:

PDF

References


G. Budiprasetyo, M. Hani’ah, and D. Z. Aflah, “Prediksi Harga Saham Syariah Menggunakan Algoritma Long Short-Term Memory (LSTM),” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 8, no. 3, pp. 164–172, 2022, doi: 10.25077/TEKNOSI.v8i3.2022.164-172.

Winarmi, “Jumlah Saham Syariah 2017-2022 Melejit, Ini Daftar Lengkapnya”, 2023, [Online]. Available: https://dataindonesia.id/pasar-saham/detail/jumlah-saham-syariah-20172022-melejit-ini-daftar-lengkapnya, Accessed: Juli 20, 2023.

M. R. Pahlawan, “Prediksi Indeks Harga Saham Menggunakan Model Hibrida Recurrent Neural Network dan Genetic Algorithm,” JATISI, vol. 9, no. 4, pp. 3619–3631, 2022, doi: 10.35957/jatisi.v9i4.3065.

G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting and Control, 3rd ed. Prentice Hall, 1994.

G. P. Zhang, “Time series forecasting using a hybrid ARIMA and neural network model,” Neurocomputing, vol. 50, pp. 159–172, 2003, doi: 10.1016/S0925-2312(01)00702-0.

G. A. Harsono, A. Setiawan, and H. Juwiantho, “Prediksi Harga Saham Yang Bersifat Siklikal Di Indonesia Menggunakan Metode LSTM dan SVM,” Jurnal Infra, vol. 10, no. 2, pp. 1–7, 2022.

G. Xu, Y. Meng, X. Qiu, Z. Yu, and X. Wu, “Sentiment analysis of comment texts based on BiLSTM,” IEEE Access, vol. 7, pp. 51522–51532, 2019, doi: 10.1109/ACCESS.2019.2909919.

J. S. Sebayang and B. Yuniarto, “Perbandingan Model Estimasi Artificial Neural Network Optimasi Genetic Algorithm dan Regresi Linier Berganda,” Medstat, vol. 10, no. 1, p. 13, 2017, doi: 10.14710/medstat.10.1.13-23.

M. Jia, J. Huang, L. Pang, and Q. Zhao, “Analysis and Research on Stock Price of LSTM and Bidirectional LSTM Neural Network,” in Advances in Computer Science Research (ACSR), Atlantis Press, 2019, pp. 467–473, doi: 10.2991/iccia-19.2019.72.

J. Shah, R. Jain, V. Jolly, and A. Godbole, “Stock Market Prediction using Bi-Directional LSTM,” presented at the IEEE International Conference on Communication information and Computing Technology, IEEE, 2021, doi: 10.1109/ICCICT50803.2021.9510147.

M. Yang and J. Wang, “Adaptability of Financial Time Series Prediction Based on BiLSTM,” Procedia Computer Science, vol. 199, pp. 18–25, 2022, doi: 10.1016/j.procs.2022.01.003.

V. Deshwal and M. Sharma, “Breast Cancer Detection using SVM Classifier with Grid Search Technique,” International Journal of Computer Applications, vol. 178, no. 31, pp. 18–23, 2019, doi: 10.5120/ijca2019919157.

L. Mardiana, D. Kusnandar, and N. Satyahadewi, “Analisis Diskriminan Dengan K Fold Cross Validation Untuk Klasifikasi Kualitas Air Di Kota Pontianak,” Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster), vol. 11, no. 1, pp. 97–102, 2022, doi: 10.26418/bbimst.v11i1.51608.

T. Lattifia, P. W. Buana, and N. K. D. Rusjayanthi, “Model Prediksi Cuaca Menggunakan Metode LSTM,” JITTER- Jurnal Ilmiah Teknologi dan Komputer, vol. 3, no. 1, pp. 994–1000, 2022, doi: 10.24843/JTRTI.2022.v03.i01.p35.

J. K. Lubis and I. Kharisudin, “Metode Long Short Term Memory dan Generalized Autoregressive Conditional Heteroscedasticity untuk Pemodelan Data Saham,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 4, pp. 652–658, 2021.

J. J. M. Moreno, A. P. Pol, A. S. Abad, and B. C. Blasco, “Using the R-MAPE index as a resistant measure of forecast accuracy,” Psicothema, vol. 25, no. 4, pp. 500–506, 2013, doi: 10.7334/psicothema2013.23.

P. A. Qori, D. S. Oktafani, and I. Kharisudin, “Analisis Peramalan dengan Long Short Term Memory pada Data Kasus Covid-19 di Provinsi Jawa Tengah,” in PRISMA, Prosiding Seminar Nasional Matematika, 2019, pp. 752–758.

R. S. Pontoh et al., “Jakarta Pandemic to Endemic Transition: Forecasting COVID-19 Using NNAR and LSTM,” Applied Sciences, vol. 12, no. 12, pp. 1–16, 2022, doi: 10.3390/app12125771.

Olah, “Understanding LSTM Networks”, 2015, [Online]. Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs/, Accessed: Desember 3, 2022.

A. Agusta, I. Ernawati, and A. Muliawati, “Prediksi Pergerakan Harga Saham Pada Sektor Farmasi Menggunakan Algoritma Long Short-Term Memory,” Jurnal Informatika, vol. 17, no. 2, pp. 164–173, 2021, doi: 10.52958/iftk.v17i2.3651.

S. Siami-Namini, N. Tavakoli, and A. S. Namin, “The Performance of LSTM and BiLSTM in Forecasting Time Series,” in 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA: IEEE, 2019, pp. 3285–3292. doi: 10.1109/BigData47090.2019.9005997.

N. Afrianto, D. H. Fudholi, and S. Rani, “Prediksi Harga Saham Menggunakan BiLSTM dengan Faktor Sentimen Publik,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 41–46, 2022, doi: 10.29207/resti.v6i1.3676.

K. U. Jaseena and B. C. Kovoor, “Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks,” Energy Conversion and Management, vol. 234, 2021, doi: 10.1016/j.enconman.2021.113944.

Y. Karyadi and H. Santoso, “Prediksi Kualitas Udara Dengan Metoda LSTM, Bidirectional LSTM, dan GRU,” JATISI, vol. 9, no. 1, pp. 671–684, 2022, doi: 10.35957/jatisi.v9i1.1588.

Z. Cui, R. Ke, Z. Pu, and Y. Wang, “Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values,” Transportation Research Part C: Emerging Technologies, vol. 118, pp. 1–14, 2020, doi: 10.1016/j.trc.2020.102674.

Z. Hameed and B. Garcia-Zapirain, “Sentiment Classification Using a Single-Layered BiLSTM Model,” IEEE Access, vol. 8, pp. 73992–74001, 2020, doi: 10.1109/ACCESS.2020.2988550.

A. Toha, Purwono, and W. Gata, “Model Prediksi Kualitas Udara dengan Support Vector Machines denganOptimasi Hyperparameter GridSearch CV,” Buletin Ilmiah Sarjana Teknik Elektro, vol. 4, no. 1, pp. 12–21, 2022, doi: 10.12928/biste.v4i1.6079.

I. Priyadarshini and C. Cotton, “A novel LSTM–CNN–grid search-based deep neural network for sentiment analysis,” J Supercomput, vol. 77, no. 12, pp. 13911–13932, 2021, doi: 10.1007/s11227-021-03838-w.




DOI: https://doi.org/10.37905/jjom.v6i1.23297



Copyright (c) 2024 Dian Islamiaty Puteri, Gumgum Darmawan, Budi Nurani Ruchjana

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.


 

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor