Karakteristik Modul Endoprima Lemah

Dewi Ika Ainurrofiqoh

Abstract


In this research, we studied weakly endoprime module, which is a development of weakly prime module by reviewing its fully invariant submodule. This is similar to the development of endoprime module from prime module. This primary objective of this research are to determine the relationship between weakly endoprime module and endoprime module and examine the fully invariant submodules of weakly endoprime module. The method employed in this research involves studying the relationship between weakly prime modules and prime modules, endoprime modules and prime modules, as well as weakly endoprime modules and weakly prime modules. The results obtained are that each endoprime module is a weakly endoprime module, but the converse is not necessarily true. Moreover, a fully invariant submodule of a weakly endoprime module is not necessarily a weakly endoprime module.

Keywords


Endoprime Modules; Weakly Endoprime Modules; Fully Invariant Submodule

Full Text:

PDF

References


N. A. Loehr, Advanced linear algebra. CRC Press, 2024, doi: 10.1201/9781003484561.

A. Facchini, ”Basic Concepts on Rings and Modules,” In Semilocal Categories and Modules with Semilocal Endomorphism Rings, Progress in Mathematics, vol. 331, Cham: Birkhäuser, 2019, doi: 10.1007/978-3-030-23284-9_2.

E. H. Feller and E. W. Swokowski, “Prime Modules,” Can. J. Math., vol. 17, pp. 1041–1052, 1965, doi: 10.4153/cjm-1965-099-5.

O. A. E. Safi, N. Mahdou, and M. Yousif, “Rings with divisibility on ascending chains of ideals,” Int. Electron. J. Algebr., vol. 35, no. 35, pp. 82–89, 2024, doi: 10.24330/ieja.1299720.

J. Dauns, “Prime modules,” J. fur die Reine und Angew. Math., vol. 1978, no. 298, pp. 156–181, 1978, doi: 10.1515/crll.1978.298.156.

H. A. Shahad and N. S. Al-Muthafar, “On essential-prime sub-modules,” J. Discret. Math. Sci. Cryptogr., vol. 24, no. 7, pp. 1973–1977, 2021, doi: 10.1080/09720529.2021.1968572.

M. Jamali and R. Jahani-Nezhad, “On classical weakly prime submodules,” Facta Univ. Ser. Math. Informatics, pp. 17–30, 2022.

P. N. Afifah and I. Irawati, “Characterization of Weakly Prime Submodule,” J. Fundam. Math. Appl., vol. 4, no. 2, pp. 180–184, 2021, doi: 10.14710/jfma.v4i2.12189.

M. Behboodi, “Weakly Prime Modules,” Vietnam J. Math., vol. 32, no. 2, pp. 185–195, 2004.

A. Haghany and M. R. Vedadi, “Endoprime modules,” Acta Math. Hungarica, vol. 106, no. 1–2, pp. 89–99, 2005, doi: 10.1007/s10474-005-0008-2.

H. Mostafanasab and A. Y. Darani, “On endo-prime and endo-coprime modules,” arxiv: Mathematics, Rings and Algebras, pp. 1–12, 2015, doi: 10.48550/arXiv.1503.00324.

R. Beyranvand and P. K. Beiranvand, “Weakly endo-prime modules,” Int. Math. Forum., vol. 11, no. 4, pp. 155–161, 2016, doi: 10.12988/imf.2016.51185.

N. Ghaedan and M. R. Vedadi, “Notes on Baer modules and their dual,” Acta Math. Univ. Comenianae, vol. 91, no. 4, pp. 325–334, 2022. [Online]. Available: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1695.

A. W. Goldie, “The structure of prime rings under ascending chain conditions,” in Proc. London Math. Soc., vol. 3, no. 4, 1958, pp. 589–608, doi: 10.1112/plms/s3-8.4.589.

S. A. Hussin and H. K. Mohammadali, “WE-Prime Submodules and WE-SemiPrime Submodules,” Ibn AL-Haitham Journal For Pure and Applied Sciences, vol. 31, no. 3, pp. 109–117, 2018, doi: 10.30526/31.3.2000.

R. Wisbauer, Modules and algebras: bimodule structure on group

actions and algebras. Harlow: Longman, 1996. [Online]. Available: https://cir.nii.ac.jp/crid/1130000794101924736.bib?lang=en.

H. A. Jumaa and M. M. Abed, “A new view of retractable modules,” in AIP Conference Proceedings, AIP Publishing, 2023, doi: 10.1063/5.0182111.

T. Y. Lam, Lectures on modules and rings. New York: Springer Science & Business Media, 2012, doi: 10.1007/978-1-4612-0525-8.

F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, 2nd ed. New York: Springer-Verlag, 1992, doi: 10.1007/978-1-4684-9913-1.




DOI: https://doi.org/10.37905/jjom.v6i2.26450



Copyright (c) 2024 Dewi Ika Ainurrofiqoh

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.