Penerapan Model Geographically Weighted Logistic Regression dengan Fungsi Pembobot Adaptive Gaussian Kernel pada Data Kemiskinan

Nunung Nurhasanah, Widiarti Widiarti, Dina Eka Nurvazly, Mustofa Usman

Abstract


Regression analysis is one statistical method used to determine the relationship between a dependent variable and one or more independent variables. Dependent variables that are categorical are analyzed using logistic regression analysis. Geographically Weighted Logistic Regression (GWLR) is a method that is a local version of logistic regression, where location factors are considered. This method assumes that the dependent variable data are distributed binomially. In this study, the GWLR method is used to determine the factors influencing the poverty percentage in West Java Province in 2022 using an adaptive Gaussian kernel weighting function. The variables used are per capita expenditure, average length of schooling, Gross Regional Domestic Product (GRDP) per capita, and population density. The results of this study indicate that the variables of per capita expenditure, Gross Regional Domestic Product (GRDP) per capita, and population density significantly influence the poverty percentage in West Java Province in 2022.

Keywords


GWLR; Adaptive Gaussian Kernel; Poverty

Full Text:

PDF

References


A. Fotheringham, C. Brunsdon, and M. Charlton, Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. New York: John Wiley & Sons, 2003.

D. Desriwendi, A. Hoyyi, and T. Wuryandari, ”Pemodelan Geographically Weighted Logistic Regression (GWLR) dengan Fungsi Pembobot Fixed Gaussian Kernel dan Adaptive Gaussian Kernel (Studi Kasus: Laju Pertumbuhan Penduduk Provinsi Jawa Tengah)”, Jurnal Gaussian, vol. 4, no. 2, pp. 193 - 204, Apr. 2015, doi: 10.14710/j.gauss.4.2.193 - 204.

B. Lu, M. Charlton, P. Harris, and A.S. Fotheringham, ”Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data,” International Journal of Geographical Information Science, vol. 28, no. 4, pp. 660-681, Jan. 2014, doi: 10.1080/13658816.2013.865739.

R. J. Yuhan and R.H.S. Jeffry, ”Metode Geographically Weighted Regression pada Karakteristik Penduduk Hampir Miskin di Kabupaten/kota Pulau Jawa,” Widya Eksakta, vol. 1, no. 1, p. 249319, 2018.

M. R. Ikhsanudin and E. Pasaribu, “Modeling the Percentage of Poor Population in Java Island using Geographically Weighted Regression Approach,” Jurnal Matematika, Statistika dan Komputasi, vol. 20, no. 1, pp. 229- 244, Sep. 2023, doi: 10.20956/j.v20i1.27804.

S.H. Daulay and E. Simamora, “Pemodelan Faktor-Faktor Penyebab Kemiskinan di Provinsi Sumatera Utara menggunakan Metode Geographically Weighted Regression (GWR),” JURRIMIPA, vol. 2, no. 1, pp. 47–60, Jan. 2023, doi: 10.55606/jurrimipa.v2i1.646.

P.M. Atkinson, S.E. German, D.A. Sear, and M.J. Clark, ”Exploring the Relations Between Riverbank Erosion and Geomorphological Controls Using Geographically Weighted Logistic Regression,” Geographical Analysis, vol. 35, no. 1, Feb. 2003, doi: 10.1111/j.1538-4632.2003.tb01101.x.

N.A. Solekha and M.F. Qudratullah, ”Pemodelan Geographically Weighted Logistic Regression dengan Fungsi Adaptive Gaussian Kernel Terhadap Kemiskinan di Provinsi NTT,” Jambura Journal Of Mathematics, vol. 4, no. 1, pp. 17-32, Jan. 2022, doi: 10.34312/jjom.v4i1.11452.

Q. S. Wardhani, S. S. Handajani, and I. Susanto, “Pemodelan Indeks Pembangunan Kesehatan Masyarakat dengan Metode Geographically Weighted Logistic Regression,” Jurnal Aplikasi Statistika & Komputasi Statistik, vol. 14, no. 1, pp. 1–12, Oct. 2022, doi: 10.34123/jurnalasks.v14i2.333.

W. Wulandari, “Geographically Weighted Logistic Regression dengan Fungsi Kernel Fixed Gaussian pada Kemiskinan Jawa Tengah,” Indonesian Journal of Statistics and Its Applications, vol. 2, no. 2, pp. 101–112, Nov. 2018, doi: 10.29244/ijsa.v2i2.189.

N. Pratiwi, Suyitno, and M. Siringoringo, ”Penerapan Model Geographically Weighted Logistic Regression Pada Data Status Kesejahteraan Masyarakat di Kalimantan Tahun 2017,” EKSPONENSIAL, vol. 11, no. 1, pp. 83-92, Jan. 2021, doi: 10.30872/eksponensial.v11i1.648.

N. L. Soliha, D. Lestari, and Y. Widyaningsih, “Analisis Faktor Faktor yang Menjelaskan Kasus AIDS Provinsi Jawa Timur Menggunakan Model Geographically Weighted Logistic Regression (GWLR),” Jurnal Statistika dan Aplikasinya , vol. 7, no. 1, pp. 37 - 48, Jun. 2023, doi: 10.21009/JSA.07104.

T. P. Maulidina and S. I. Oktora, “Analisis Spasial Ketertinggalan Daerah Di Indonesia Tahun 2018 menggunakan Geographically Weighted Logistic Regression”, Indonesian Journal of Statistics and Its Applications, vol. 4, no. 3, pp. 528–544, Dec. 2020, doi: 10.29244/ijsa.v4i3.690.

BPS, Data dan Informasi Kemiskinan di Indonesia, Badan Pusat Statistik, 2022. [Online]. Available: https://jabar.bps.go.id/pressrelease/2021/07/15/900.

D.C. Montgomery, and G.C. Runger, ”Applied Statistics and Probability For Engineers”, 2nd Edition. New York: John Wiley & Sons, 2011.




DOI: https://doi.org/10.37905/jjom.v6i2.26504



Copyright (c) 2024 Nunung Nurhasanah, Widiarti Widiarti, Dina Eka Nurvazly, Mustofa Usman

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.