Penerapan Metode I-CHAID Menggunakan SMOTE pada Data Tidak Seimbang untuk Klasifikasi Durasi Studi Mahasiswa

Umar D. Akor, Muhammad Rezky Fiesta Payu, La Ode Nashar

Abstract


The issue of delayed graduation is often encountered in various universities, including in the Statistics Study Program at Universitas Negeri Gorontalo, for graduates between 2018 and 2023. Among them, 162 students (76.5%) experienced delayed graduation, and 5 students (2.35%) dropped out. This delay in graduation is caused by various factors, necessitating a classification method capable of identifying the most dominant factors. The classification method used in this research is Improved Chi-Square Automatic Interaction Detection (I-CHAID) with the Synthetic Minority Oversampling Technique (SMOTE) approach. SMOTE is employed to address imbalanced data. Based on the I-CHAID classification tree with the SMOTE approach, the significant factors influencing the duration of study completion are the GPA in the fifth semester (67.2%) and the mentoring method (87.5%). As for the classification performance from the 40% testing data, the accuracy achieved was 40.6%, meaning that out of 32 samples, 13 were correctly classified. The sensitivity value was 6.25%, indicating the success rate of classifying data for students who graduated on time. The specificity value was 75%, showing the success rate in classifying data for students who did not graduate on time. The precision value was 20%, reflecting the accuracy of predicting students who actually graduated on time, and the F-measure was 9.52%, indicating the balance between precision and sensitivity.

Keywords


Study Duration; Classification; Improved CHAID; SMOTE

Full Text:

PDF

References


F. Nofratama, H. Hasrul, H. Muchtar, and S. F. Dewi, “Kendala Keterlambatan Penyelesaian Studi Mahasiswa PPKn FIS Universitas Negeri Padang,†J. Educ. Cult. Polit., vol. 2, no. 2, pp. 185–191, Nov. 2022, doi: 10.24036/jecco.v2i2.106.

A. Adawiyah, S. Sulfasyah, and J. Arifin, “Implikasi Pendidikan Nonformal Pada Remaja,†Equilib. J. Pendidik. Sosiol., vol. 4, no. 2, pp. 1–8, Feb. 2017, doi: 10.26618/equilibrium.v4i2.506.

M. Annur, J. A. Dahlan, and F. Agustina, “Penerapan Metode Multivariate Adaptive Regression Spline (MARS) untuk Menentukan Faktor yang Mempengaruhi Masa Studi Mahasiswa FPMIPA UPI,†J. EurekaMatika, vol. 3, no. 1, pp. 135–155, 2015, [Online]. Available: https://dspace.uii.ac.id/123456789/27720

I. G. A. M. Srinadi and D. P. E. Nilakusumawati, “Analisis Waktu Kelulusan Masiswa FMIPA Universitas Udayana dan Faktor-faktor yang Memengaruhinya,†E-Jurnal Mat., vol. 9, no. 3, p. 205, Sep. 2020, doi: 10.24843/MTK.2020.v09.i03.p300.

N. D. Larasati and W. S. Jatiningrum, “Analisis Faktor pada Keterlambatan Studi Mahasiswa Teknik Industri Universitas Ahmad Dahlan,†Manaj. Pendidik., vol. 16, no. 2, pp. 83–96, Dec. 2021, doi: 10.23917/jmp.v16i2.12134.

S. Sulasteri, F. Nur, and A. Kusumayanti, “Faktor-faktor penyebab keterlambatan mahasiswa uin alauddin makassar menyelesaikan skripsi,†J. Idaarah, vol. III, no. 1, pp. 96–113, 2019, doi: https://doi.org/10.24252/idaarah.v3i1.9389.

S. Telaumbanua, S. A. Abimannyu, and G. Y. Abdullah, “Literatur Review : Pendekatan Naïve Bayes Untuk Klasifikasi Penyakit Tanaman Kentang,†BIIKMA Bul. Ilm. Ilmu Komput. dan Multimed., vol. 2, no. 3, pp. 420–428, 2024, [Online]. Available: https://jurnalmahasiswa.com/index.php/biikma/article/view/1603

E. Novianto, S. Suhirman, and D. Prasetyo, “Perbandingan metode klasifikasi random forest dan support vector machine dalam memprediksi capaian studi mahasiswa,†JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 4, pp. 1821–1833, 2024, doi: https://doi.org/10.29100/jipi.v9i4.5423.

I. K. Hasan, R. Resmawan, and J. Ibrahim, “Perbandingan K-Nearest Neighbor dan Random Forest dengan Seleksi Fitur Information Gain untuk Klasifikasi Lama Studi Mahasiswa,†Indones. J. Appl. Stat., vol. 5, no. 1, pp. 58-66, 2022, doi: 10.13057/ijas.v5i1.58056.

Z. Bula, R. Resmawan, L. O. Nashar, and S. K. Nasib, “Implementasi Improved Chi-Square Automatic Interaction Detection Pada Klasifikasu Faktor-faktor yang Mempengaruhi Literasi Informasi Generasi Muda,†J. Stat. dan Apl., vol. 6, no. 2, pp. 214–222, Dec. 2022, doi: 10.21009/JSA.06207.

P. D. Yuliasari, R. Goejantoro, and F. D. T. Amijaya, “Klasifikasi Rumah Tangga Miskin Di Kecamatan Kaubun Tahun 2020 Dengan Menggunakan Metode Improved Chi-Square Automatic Interaction Detection,†EKSPONENSIAL, vol. 12, no. 1, p. 83, Jun. 2021, doi: 10.30872/eksponensial.v12i1.765.

R. A. Barro, I. D. Sulvianti, and F. M. Afendi, “Penerapan Synthetic Minority Oversampling Technique (SMOTE) Terhadap Data Tidak Seimbang Pada Pembuatan Model Komposisi Jamu,†Xplore J. Stat., vol. 1, no. 1, pp. 1–6, 2013, doi: 10.29244/xplore.v1i1.12424.

E. Erlin, Y. Desnelita, N. Nasution, L. Suryati, and F. Zoromi, “Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 677–690, Jul. 2022, doi: 10.30812/matrik.v21i3.1726.

V. M. Santi, L. Nafisah, and Q. Meidianingsih, “Penerapan Metode SMOTE CHAID dalam Klasifikasi Tuberkulosis Relapse,†J. Stat. dan Apl., vol. 6, no. 1, pp. 26–36, Jun. 2022, doi: 10.21009/JSA.06103.

I. S. Hidayati and I. M. Arcana, “Penerapan CHAID Dengan Pendekatan SMOTE Pada Kematian Balita di Kawasan Timur Indonesia Tahun 2017,†Semin. Nas. Off. Stat., vol. 2019, no. 1, pp. 357–367, May 2020, doi: 10.34123/semnasoffstat.v2019i1.97.

I. C. Negara and A. Prabowo, “Penggunaan Uji Chi–Square untuk Mengetahui Pengaruh Tingkat Pendidikan dan Umur terhadap Pengetahuan Penasun Mengenai HIV–AIDS di Provinsi DKI Jakarta,†Pros. Semin. Nas. Mat. dan Ter. 2018, vol. 1, no. 1, pp. 1–8, 2018.

C. P. Balasubramaniam and D. R. Gunasundari, “Supply Chain Enhancement Using Improved Chaid Algorithm for Classifying the Customer Groups,†Int. J. Comput. Appl. Technol. Res., vol. 6, no. 8, pp. 378–383, Aug. 2017, doi: https://doi.org/10.7753/IJCATR0608.1006.

Y. Salsabila, A. Fatah, and J. Jaenudin, “Hubungan antara Literasi Numerasi terhadap Kemampuan Berpikir Kritis dan Kreatif Siswa SMP di Kecamatan Curug,†Equal. J. Ilm. Pendidik. Mat., vol. 6, no. 1, pp. 42–54, Jun. 2023, doi: 10.46918/equals.v6i1.1789.

C. Damayanti, D. Kusnandar, and Yudhi, “Perbandingan Hasil Pembentukan Pohon Klasifikasi Metode CHAID dan Improved CHAID,†Bul. Ilm. Mat, Stat, dan Ter., vol. 07, no. 4, pp. 10–27, 2018, doi: https://doi.org/10.26418/bbimst.v7i4.28655.

G. Zeng, “On the confusion matrix in credit scoring and its analytical properties,†Commun. Stat. - Theory Methods, vol. 49, no. 9, pp. 2080–2093, May 2020, doi: 10.1080/03610926.2019.1568485.




DOI: https://doi.org/10.37905/jjom.v7i1.27978



Copyright (c) 2025 Umar D. Akor, Muhammad Rezky Fiesta Payu, La Ode Nashar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.