Konstruksi dan Analisis r-Ideal di BG-aljabar

Meivy Andhika Beauty, Sri Gemawati, Leli Deswita

Abstract


A non-empty set G with a binary operation ∗ and a constant 0 that satisfies the following axioms: , , and  for all  is called a BG-algebra. A non-empty subset I of G is said to be an ideal in G if it satisfies: (i)  and (ii)  and  implies  for all . This article introduces the new concept of r-ideal in BG-algebra, which is an extension of the ideal in BN-algebra. Unlike the definition of an ideal in BN-algebra, an r-ideal only requires a non-empty subset I of G without the need to satisfy the full ideal conditions. This study examines the properties of r-ideals and their relationships with subalgebras, normal, and ideals in BG-algebra. In the final part, it is concluded that every subalgebra is an r-ideal in BG-algebra, and every normal ideal is also an r-ideal.

Keywords


BG-algebra; r-ideal BG-algebra; normal; subalgebra

Full Text:

PDF

References


C. B. Kim and H. S. Kim, “On BG-algebras,” Demonstratio Mathematica, vol. 41, no. 3, pp. 497–505, 2008.

Kamaludin, S. Gemawati, and Kartini, “Derivations in BG-algebras,” International Journal of Algebra, vol. 13, no. 5, pp. 249–257, 2019, doi: 10.12988/ija.2019.9620.

S. Widianto, S. Gemawati, and Kartini, “Direct product in BG-algebras,” International Journal of Algebra, vol. 13, no. 5, pp. 239–247, 2019, doi: 10.12988/ija.2019.9619.

D. K. Basnet and L. B. Singh, “(∈, ∈∨q)-Fuzzy Ideals of BG-Algebra,” 2011.

E. Yattaqi, S. Gemawati, and I. Hasbiyati, “fq-derivasi di BM-aljabar,” Jambura Journal of Mathematics, vol. 3, no. 2, pp. 155–166, Jun. 2021, doi: 10.34312/jjom.v3i2.10379.

S. Adnan Bajalan, R. Raheem Mohammed Amin, and A. K. Bajalan, “Structures of Pseudo-BG Algebra and Sime pseudo-BG-Algebra.” [Online]. Available: http://tjps.tu.edu.iq/index.php/j

B. Elavarasan, G. Muhiuddin, K. Porselvi, and Y. B. Jun, “Hybrid structures applied to ideals in near-rings,” Complex and Intelligent Systems, vol. 7, no. 3, pp. 1489–1498, Jun. 2021, doi: 10.1007/s40747-021-00271-7.

C. M. Tiwari and S. Swati, “AN INTRODUCTION OF GRAPH THEORY IN APPLIED MATHEMATICS,” 2023. [Online]. Available: https://www.researchgate.net/publication/371138959

R. Muthuraj and S. Devi, “Multi-Fuzzy BG-ideals in BG-algebra,” Annals of Pure and Applied Mathematics, vol. 15, no. 2, pp. 193–200, Dec. 2017, doi: 10.22457/apam.v15n2a5.

S. Gemawati, Mashadi, Kartini, Musraini, and E. Fitria, “Sheffer Stroke BN-algebras and Connected Topics,” European Journal of Pure and Applied Mathematics, vol. 18, no. 1, p. 5783, Jan. 2025, doi: 10.29020/nybg.ejpam.v18i1.5783.

X. Zhang, R. A. Borzooei, and Y. B. Jun, “Q-filters of quantum B-algebras and basic implication algebras,” Symmetry (Basel), vol. 10, no. 11, Nov. 2018, doi: 10.3390/sym10110573.

H. H. Abbass and A. A. Hamza, “On U-BG-filter of a U-BG-BH-algebra,” Applied Mathematical Sciences, vol. 11, pp. 1297–1305, 2017, doi: 10.12988/ams.2017.73114.

Q. Mohsin Luhaib and H. Hadi Abbass, “On a Smarandache Closed and Completely Filter of a Smarandache BH-Algebra,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Nov. 2020. doi: 10.1088/1757-899X/928/4/042017.

C. B. Kim and H. S. Kim, “On BN-algebras,” Kyungpook Mathematical Journal, vol. 53, no. 2, pp. 175–184, 2013, doi: 10.5666/KMJ.2013.53.2.175.

E. Fitria, S. Gemawati, and Kartini, “Prime ideals in B-algebras,” International Journal of Algebra, vol. 11, pp. 301–309, 2017, doi: 10.12988/ija.2017.7838.

G. Dymek and A. Walendziak, “(Fuzzy) Ideals of BN-Algebras,” Scientific World Journal, vol. 2015, 2015, doi: 10.1155/2015/925040.

G. #1, E. Fitria, A. Hadi, and M. M. #4, “Complete Ideal and n-Ideal of BN-algebras,” International Journal of Mathematics Trends and Technology, vol. 66, pp. 52–59, 2020, doi: 10.14445/22315373/IJMTT-V66I11P503.

S. Gemawati, M. M, A. Putri, R. Marjulisa, and E. Fitria, “T-IDEAL AND α-IDEAL OF BP-ALGEBRAS,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 18, no. 2, pp. 1129–1134, May 2024, doi: 10.30598/barekengvol18iss2pp1129-1134.

M. Murali Krishna Rao, “r-Ideals and m-k-ideals in inclines,” Discussiones Mathematicae - General Algebra and Applications, vol. 40, no. 2, pp. 297–309, Dec. 2020, doi: 10.7151/dmgaa.1340.

S. Gemawati, M. Musraini, A. Hadi, L. Zakaria, and E. Fitria, “On r-Ideals and m-k-Ideals in BN-Algebras,” Axioms, vol. 11, no. 6, Jun. 2022, doi: 10.3390/axioms11060268.




DOI: https://doi.org/10.37905/jjom.v7i1.30097



Copyright (c) 2025 Meivy Andhika Beauty, Sri Gemawati, Leli Deswita

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.