Jumardin Jumardin, Akhiruddin Maddu, Koekoeh Santoso, Isnaeni Isnaeni


Carbon Dots (CDs) which have been synthesized using the laser ablation method show the presence of UV-Vis absorption in the wavelength range of 303 nm to 333 nm for absorbance and 495 nm to 503 nm for fluorescence. Changes in the time duration 1, 2, 3 hours of CDs resulted in changes in the optical energy gap. The optical energy gap valuesare distinguished by the type of indirect transition (n=2) is 3.40 eV (1 hour), 3.15 eV (2 hour), 2.85 eV (3 hour) and direct transition (n=1/2) is 2.58 eV (1 hour), 2.31 eV (2 hour), 1.70 eV (1 hour).

Full Text:



Abed, R., N., Al-Sahib, N., K., & Khalifa, A., J., N. (2020). Energy Gap Demeanor for Carbon Doped with Chrome Nanoparticle to Increase Solar Energy Absorption. Journal of Progress Color, Colorants and Coatings, 13: 143-154.

Ahmadi, M. T., Ismail, R., Tan, M. L. P., & Arora, V. K. (2008). The Ultimate Ballistic Drift Velocity in Carbon Nanotubes. Journal of Nanomaterials, 2008, 1–8.

Aji, M., P., Susanto, Wiguna, P., A., & Sulhadi. (2017). Facile Synthesis of Luminescent Carbon Dots from Mangosteen Peel by Pyrolysis Method. Journal of Theoritical and Applied Physics, 11 (2): 119–126. DOI: 10.1007/s40094-017-0250-3.

Ali., M., M. (2011). Characterization of ZnO Thin Films Grow by Chemical Bath Deposition. Journal of Basrah Research, ISSN-1817-2695. Vol. 37, No. 3A.

Ajimsha, R., S., Anoop, G., Aravind, A., & Jayaraj, M., K. (2008). Luminescence from Surfactant-Free ZnO Quantum Dots Prepared by Laser Ablation in Liquid. Journal of Electrochemical and Solid-State Letters, 11 (2), K14. DOI: 10.1149/1.2820767.

Anikin, K., V., Melnik, N., N., Simakin, A., V., Hafeev, G., A., Voronov, V., & Vitukhnovsky, A., G., (2002). Formation of ZnSe and CdS Quantum Dots via Laser Ablation in Liquids. Journal of Chemical Physics Letters, 366 (3-4): 357-360. DOI:

Basu, A., Suryawanshi, A., Kumawat, B., Dandi, A., Guin, D, & Ogale, S., B. (2015). Starch (Tapioca) to Carbon Dots: An Efficient Green Approach to On-Off-On Photoluminescence Probe for Fluoride Ion Sensing. The Analyst, 140 (6): 1837-1841. DOI: 10.1039/C4AN02340D.

Bajpai, S. K., & Jain, A. (2010). Removal of copper (II) from aqueous solution using spent tea leaves (STL) as a potential sorbent. 36(3), 8.

Baker, S. N., & Baker, G. A. (2010). Luminescent Carbon Nanodots: Emergent Nanolights. Angewandte Chemie International Edition, 49(38), 6726–6744.

Bhatt, M., Bhatt, S., Vyas, G., Raval, I., H., Haldar, S., & Paul, P. (2020). Water-Dispersible Fluorescent Carbon Dots as Bioimaging Agents and Probes for Hg2+ and Cu2+ ions, ACS Aplied Nano Materoals, 3 (7): 7096–7104. DOI:

Belenkov, E. A., & Ali-Pasha, V. A. (2011). 3D-graphite structure. Crystallography Reports, 56(1), 101–106.

Dave, P. Y. (2020). Carbon Dots: Zero-Dimensional Fluorescent Material. 10(1), 11.

Dias, C., Vasimalai, N., Sárria, M., P., Pinheiro, I., Boas, V., Peixoto, J., & Espiña, B. (2019). Biocompatibility and Bioimaging Potential of Fruit-Based Carbon Dots. Nanomaterials, 9 (2): 199. DOI: 10.3390/nano9020199.

Ding, H., Li, X., H., Chen, X., B., Wei, J., S., Li, X., B., & Xiong, H., M. (2020). Surface States of Carbon Dots and Their Influences on Luminescence. Journal of Applied Physics, 127 (23): 231101. DOI: 10.1063/1.5143819.

Effendi, M. (2012). Analisis Sifat Optik Lapisan Tipis TiO2 Doping Nitrogen yang Disiapkan dengan Metode Spin Coating. 4.

Emam, A., N., Loutfy, S., A., Mostafa, A., A., Awad, H., & Mohamed, M., B. (2017). Cyto-toxicity, Biocompatibility and Cellular Response of Carbon Dots–Plasmonic Based Nano- Hybrids for Bioimaging. RSC Advances, 7 (38): 23502–23514. DOI: 10.1039/c7ra01423f.

Fadlan, A., Marwoto, P., Aji, M., P., Susanto, & Iswari, R., S. (2017). Synthesis of Carbon Nanodots from Wastepaper with hydrothermal Method. International Conference on Engineering, Science and Nanotechnology 2016 (ICESNANO 2016), 1788, 030069-1–030069-6. DOI: 10.1063/1.4968322.

Goncalves, H., Jorge, P., A., S., Fernandes, J., R., A., & Esteve da Silva, J., C., G. (2010). Hg (II) Sensing Based on Functionalized Carbon Dots Obtained by Direct Laser Ablation. Sensors and Actuators B: Chemical, 145 (2): 702-707. DOI: 10.1016/j.snb.2010.01.031.

Hutton, G., A., M., Martindale, B., C., M., & Reisner, E. (2017). Carbon Dots as Photosensitisers for Solar-Driven Catalysis. Chemical Society Reviews, 46 (20): 6111-6123. DOI: 10.1039/c7cs00235a.

Isnaeni, Hanna, M., Y., Pambudi, A., A., & Murdaka, F., H. (2017). Influence of Ablation Wavelength and Time on Optical Properties of Laser Ablated Carbon Dots. The 6th International Conference on Theoretical and Applied Physics (The 6th ICTAP). DOI:

Kaczmarek, A., Hoffman, J., Morgiel, J., Moscicki, T., Stobinski, L., Szymanski, Z., & Małolepszy, A. (2021). Luminescent Carbon Dots Synthesized by the Laser Ablation of Graphite in Polyethylenimine and Ethylenediamine. Materials, 14 (4): 729. DOI:

Klintenberg, M., Lebègue, S., Ortiz, C., Sanyal, B., Fransson, J., & Eriksson, O. (2009). Evolving properties of two-dimensional materials: From graphene to graphite. Journal of Physics: Condensed Matter, 21(33), 335502.

Kurniawan. C., Waluyo, T., B., & Sebayang, P. (2011). Analis Ukuran Partikel Menggunakan Free Software Image-J. Seminar Nasional Fisika 2011. Pusat Penelitian Fisika-LIPI. ISSN 2088-4176.

Li, X., Wang, H., Shimizu, Y., Pyantenko, A., Kawaghuci, K., & Koshizaki, N. (2011). Preparation of Carbon Quantum Dots with Tunable Photoluminesence by Rapid Laser Passivation in Ordinary Organic Solvent. Chemistry of Communication, 47 (3): 932-934. DOI: 10.1039/c0cc03552a.

Lim, S., Y., Shen, W., & Gao, Z. (2015). Carbon Quantum Dots and Their Applications. Chemical Society Reviews, 44 (1): 362-381. DOI: 10.1039/C4CS00269E.

Liu, Y., Wanga, P., Shiral Fernando, K., A., LeCroy, G., E., Maimaiti, H., Harruff-Miller, B., A., & Suna, Y., P. (2016). Enhanced Fluorescence Properties of Carbon Dots in Polymer Films. Journal of Mater Chemistry C, 4 (29): 6967–6974. DOI: 10.1039/ C6TC01932C.

Oo, H. M., Mohamed-Kamari, H., & Wan-Yusoff, W. M. D. (2012). Optical Properties of Bismuth Tellurite Based Glass. International Journal of Molecular Sciences, 13(4), 4623–4631.

Peng, Z., Zhou, Y., Ji, C., Pardo, J., Mintz, K., J., Pandey, R., R., Chusuei, C., C., Graham, R., M., Yan, G., & Leblanc, R., M. (2020). Facile Synthesis of “Boron-Doped” Carbon Dots and Their Application in Visible-Light-Driven Photocatalytic Degradation of Organic Dyes. Nanomateials, 10 (8): 1560. DOI: 10.3390/nano10081560.

Prasannan, A., & Imae, T. (2013). One-Pot Synthesis of Fluorescent Carbon Dotsfrom Orange Waste Peels. Industrial & Engineering Chemistry Research, 52(44): 15673–15678. DOI: 10.1021/ie402421s.

Qu, S., Wang, X., Lu, Q., Liu, X., & Wang, L. (2012). A Biocompatible Flourecent in Based on Water-Soluble Luminescent Carbon Nanodots. Angewandte Chemie, 124 (49): 12381-12384. DOI: 10.1002/ange.201206791.

Reyes, D., Camacho, M., Camacho, M., Mayorga, M., Weathers, D., Salamo, G., Wang, Z., & Neogi, A. (2016). Nanoscale Research Letters 11 (1): 424. DOI: 10.1186/s11671-016-1638-8.

Sun, Y., Zheng, S., Liu, L., Kong, Y., Zhang, A., Xu, K., & Han, C. (2020). The Cost- Effective Preparation of Green Fluorescent Carbon Dots for Bioimaging and Enhanced Intracellular Drug Delivery. Nanoscale Research Letter, 15 (1): 55. DOI:

Sun, X., & Lei, Y. (2017). Fluorescent Carbon Dots and Their Sensing Applications. Journal of Trends in Analytical Chemistry, 89:163-180. DOI: httpd://

Sun, Y., P., Zhou, B., Lin, Y., Wang, W., Fernando, K., A., S., Pathak, P., Meziani, M., J., Harruff, B., A., Wang, X., Wang, H., Luo, P., G., Yang, H., Kose, M., E., Chen, B., Veca, L., M., & Xie, S., Y. (2006). Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. Journal of the American Chemical Society, 128 (24): 7756–7757. DOI: 10.1021/ja062677d.

Tauc, J. (1972). State In the Gap. Journal on Crystal Sol, 8 (10): 569-585.

Thongpool, V., Asanithi, P., Limsuwan, P. (2012). Synthesis of Carbon Particles Using Laser Ablation in Ethanol. Procedia Engineering, 32: 1054-1060. DOI: DOI:10.1016/j.proeng.2012.02.054.

Wang, K., Gao, Z., Gao, G., Wo, Y., Wang, Y., Shen, G., & Cui, D. (2013). Systematic Safety Evaluation on Photoluminescent Carbon Dots. Nanoscale Research Letters, 8 (1): 122. DOI: 10.1186/1556-276X-8-122.

Wilson, W., L., Szajowski, P., F., & Brus, B., L. (1993). Quantum Confinement in Size-Selected Surface-Oxidized Silicon Nanocristals. Science, 262 (5137): 1242-1244. DOI: 10.1126/science.262.5137.1242.

Zhu, J., Zhu, F., Yue, X., Chen, P., Sun, Y., Zhang, L., Mu, D., & Ke, F. (2019). Waste Utilization of Synthetic Carbon Quantum Dots Based on Tea and Peanut Shell. Journal of Nanomaterials, 2019, 1–7.

Vinsiah, R., Suharman, A., & Desi. (2014). Pembuatan Karbon Aktif dari Cangkang Kulit Buah Karet (Hevea Brasilliensis). Pendidikan Kimia Universitas Sriwijaya (189-199).

Vinod, M., & Gopchandra, K., G. (2014). Au, Ag, and Au: Ag Colloidal Nanoparticles Synthesized by Pulsed Laser Ablation as SERS Substrates. Progres in Natural Science: Materials International, 24 (6): 569-678. DOI:

Zhang, R., Zhao, M., Wang, Z., Wang, Z., Zhao, B., Miao, Y., Zhou, Y., Wang, H., Hao, Y., Chen, G., & Zhu, F. (2018). Solution-Processable ZnO/Carbon Quantum Dots Electron Extraction Layer for Highly Efficient Polymer Solar Cells. ACS Applied Materials and Interfaces, 10 (5): 4895-4903. DOI: 10.1021/acsami.7b17969.



  • There are currently no refbacks.

Copyright (c) 2021 Jumardin, Akhiruddin Maddu, Koekoeh Santoso, and Isnaeni

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.