ESTIMASI MODEL REGRESI SEMIPARAMETRIK SPLINE TRUNCATED MENGGUNAKAN METODE MAXIMUM LIKELIHOOD ESTIMATION (MLE)
Abstract
Keywords
Full Text:
PDFReferences
Arisandi, R. dan Purhadi., (2014), “Estimasi Parameter dan Pengujian Hipotesis Model Regresi Burr Tiga Parameter Tipe XII”, Prosiding Seminar Nasional Matematika, Universitas Jember, hal: 145-166.
Budiantara, I. N., (2011), Penelitian Bidang Regresi Spline Menuju Terwujudnya Penelitian Statistika yang Mandiri dan Berkarakter, Prosiding Seminar Nasional FMIPA Undiksha, hal: 09-28.
Budiantara, I. N., Ratnasari, V., Madu, R., dan Zain, I., (2015), “The Combination of Spline and Kernel Estimator for Nonparametric Regression and Its Properties,” Applied Mathematical Sciences, Vol. 09, No. 22, hal: 6083-6094.
Budiantara, I. N., (2019), Regresi Nonparametrik Spline Truncated, Surabaya: ITS Press.
Dani, A. T. R., Adrianingsih, N. Y., & Ainurrochmah, A., (2020), “Pengujian Hipotesis Simultan Model Regresi Nonparametrik Spline Truncated dalam Pemodelan Kasus Ekonomi,” Jambura Journal of Probability and Statistics, Vol. 01, No. 02, hal:98-106
Dani, A. T. R. dan Adrianingsih, N. Y., (2021), “Pemodelan Regresi Nonparametrik dengan Estimator Spline Truncated dan Deret Fourier,” Jambura Journal of Mathematics, Vol. 03, No. 01, hal. 26-36.
Dani, A. T. R., Ratnasari, V., dan Budiantara, I. N., (2021), “Optimal Knots Point and Bandwidth Selection in Modeling Mixed Estimator Nonparametric Regression,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1115.
Draper, N. R. dan Smith, H., (1992), Applied Regression Analysis: Third Edition, USA: John Wiley & Sons, Inc.
Eubank, R. L., (1999), Nonparametric Regression and Spline Smoothing, New York: Marcel Dekker.
Montoya, E. L., Ulloa, N., dan Miler, V., (2014), “A Simulation Study Comparing Knot Selection Methods with Equality Spaced Knots in a Penalized Regression Spline,” International Journal of Statistics and Probability, Vol. 03, No. 03, hal: 96-110.
Saputro, D. R. S., Demu, K. R., dan Widyaningsih, P., (2018), “Nonparametric Truncated Spline Regression Model on the Data of Human Development Index (HDI) in Indonesia,” 2nd International Conference on Statistics, Mathematics, Teaching and Research, IOP Conf. Series: Journal of Physics, hal: 01-04.
Wahba, G., (1990), Spline Models for Observational Data, Pennsylvania: SIAM.
DOI: https://doi.org/10.34312/jjps.v2i2.10255
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Jambura Journal of Probability and Statistics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.