Model Markov Switching Autoregressive pada Data Covid-19 di Indonesia

Setyo Wira Rizki, Shantika Martha, Bartolomius Bartolomius, Rita Apriliyanti

Abstract


The Covid-19 pandemic has had a very influential impact on socio-economic conditions in Indonesia. Forecasting the number of Covid-19 cases is needed to support taking preventive action. The method that can be used to determine the number of Covid-19 cases is a forecasting method using the Markov Switching Autoregressive (MSAR) time series data model as an alternative for analyzing structural change data. This research uses Covid-19 confirmation data in Indonesia for the period March 2020-June 2021, with the aim of designing an MSAR model and calculating the magnitude of the transition opportunity in each state in the Covid-19 confirmation data in Indonesia. The MSAR model begins by describing the data and checking the stationarity of the data. After that, Box-Jenkins modeling was carried out to test heteroskedasticity and structural changes. Next, the MSAR model parameters were estimated and the transition matrix was formed. This research shows that the best MSAR model formed is the MS (2)-AR (5) model, with a static transition probability value in state 1 of 0.981330. However, it appears that there is a chance of 0.018670 for the Covid-19 confirmation condition to move to state 2. Testing in the case of state 2 produces a transition chance of 0.980991 in state 2, with a transition chance of Covid-19 confirmation changing to state 1 of 0.019009.


Keywords


Covid-19, state, Time Series, MSAR.

Full Text:

PDF

References


C. A. Maskur, “Analisis dampak covid-19 terhadap pendapatan peternak unggas di kabupaten probolinggo,” Jurnal Agriovet, vol. 3, no. 1, pp. 63–74, 2020.

I. Masruroh, R. Andrean, and F. Arifah, “Peran pemerintah dalam mengatasi dampak pandemi covid-19 bagi umkm di indonesia,” Journal of Innovation Research and Knowledge, vol. 1, no. 1, pp. 41–48, 2021.

J. H. V. Purba, R. Fathiah, and S. Steven, “The impact of covid-19 pandemic on the tourism sector in indonesia,” Riset: Jurnal Aplikasi Ekonomi Akuntansi dan Bisnis, vol. 3, no. 1, pp. 389–401, 2021.

D. Junaedi et al., “Dampak pandemi covid-19 terhadap stabilitas moneter indonesia,” Al-Kharaj: Jurnal Ekonomi, Keuangan & Bisnis Syariah, vol. 3, no. 1, pp. 17–36, 2020.

N. Suparman, “Dampak pandemi covid-19 terhadap pengelolaan keuangan negara,” Indonesian Treasury Review: Jurnal Perbendaharaan, Keuangan Negara Dan Kebijakan Publik, vol. 6, no. 1, pp. 31–42, 2021.

B. Bartolomius, S. Martha, and S. Aprizkiyandari, “Pemodelan markov switching autoregressive (msar) pada data inflasi di indonesia,” Bimaster: Buletin Ilmiah Matematika, Statistika Dan Terapannya, vol. 10, no. 4, 2021.

S. Manullang, “Analisis runtun waktu menggunakan model markov,” Generasi Kampus, vol. 11, no. 1, 2018.

A. Khoerunnisa, I. M. Nur, and P. R. Arum, “Metode markov switching autoregressive (msar) untuk peramalan indeks saham syariah indonesia (issi),” in Prosiding Seminar Nasional UNIMUS, vol. 5, 2022.

J. Rahman, E. Puspita, and M. Suherman, “Markov switching autoregressive.”

L. Spezia, S. Gibbs, M. Glendell, R. Helliwell, R. Paroli, and I. Pohle, “Bayesian analysis of high-frequency water temperature time series through Markov switching autoregressive models,” Environmental Modelling & Software, vol. 167, p. 105751, 2023.

A. Prasyanti et al., “Pemodelan markov switching autoregressive (msar) pada data time series,” 2017.

A. R. Ashariansyah, N. Iriawan, and A. Mukarromah, “Pemodelan harga cryptocurrency menggunakan markov switching autoregressive,” Inferensi, vol. 3, no. 2, pp. 81–88, 2020.

M. Mamuroh, S. Sudarno, and H. Yasin, “Identifikasi breakpoint dan pemodelan autoregressive structural change pada data runtun waktu (studi kasus indeks harga konsumen umum kota semarang tahun 1994–2010),” Jurnal Gaussian, vol. 3, no. 1, pp. 91–100, 2014.

U. A. Wisza, D. Devianto et al., “Model laju perubahan nilai tukar rupiah (idr) terhadap poundsterling (gbp) dengan metode markov switching autoregressive (msar),” Jurnal Matematika UNAND, vol. 5, no. 3, pp. 56–64, 2016.

F. D. Ariyani, B. Warsito, and H. Yasin, “Pemodelan markov switching autoregressive,” Jurnal Gaussian, vol. 3, no. 3, pp. 381–390, 2014.




DOI: https://doi.org/10.37905/jjps.v5i1.19429

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jambura Journal of Probability and Statistics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Editorial Office of Jambura Journal of Probability and Statistics:
 
Department of Statistics, 3rd Floor Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B.J Habibie, Tilongkabila Kabupaten Bone Bolango, 96119
Telp: +6285398740008 (Call/SMS/WA)
E-mail: redaksi.jjps@ung.ac.id