Estimasi Risiko Pada Saham PT. Gojek Tokopedia Tbk dan Expected Shortfall Menggunakan ARIMA-GARCH Model

Ihsan Fathoni Amri, Linda Puspitasari, Danu Priambodo, Rahma Dewi Azzahrani, M. Al Haris

Abstract


Evaluation of losses is very important when investing in stocks where an approach is needed to take into account risk, the approaches that can be used are Value-at-Risk and Expected Shortfall. The purpose of this research is to estimate the Value-at-Risk and Expected Shortfall of PT. Gojek Tokopedia Tbk uses the time series model methodology. One year daily closing price of PT. Gojek Tokopedia Tbk will be used as a source of research data. During the time series modeling process, the ARIMA model is intended as an average model and the GARCH model for model volatility, both of which are used to predict stock movements. The average value and variance models are then intended to calculate the Value-at-Risk and Expected Shortfall of the stocks used, respectively. The results obtained for the VaR value were 0.088911 and the ES value was 0.122084. This shows that the ES method is superior in considering the risk of stock investment that has been analyzed.
 

Keywords


ARIMA; Expected Shortfal; GARCH; Time Series Model; Value-at-Risk

Full Text:

PDF

References


A. Pambudi, “Penerapan crisp-dm menggunakan mlr k-fold pada data saham pt. telkom indonesia (persero) tbk (tlkm)(studi kasus: Bursa efek indonesia tahun 2015-2022),” Jurnal Data Mining dan Sistem Informasi, vol. 4, no. 1, pp. 1–14, 2023.

M. I. Rizki, T. Ammar, F. Fitriyani, and S. Fasya, “Peramalan indeks harga saham pt verena multi finance tbk dengan metode pemodelan arima dan archgarch,” J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, vol. 14, no. 1, pp. 11–23, 2021.

Q. Weng, R. Liu, and Z. Tao, “Forecasting tesla’s stock price using the arima model,” Proceedings of Business and Economic Studies, vol. 5, no. 5, pp. 38–45, 2022.

G. Ardesfira, H. F. Zedha, I. Fazana, J. Rahmadhiyanti, S. Rahima, and S. Anwar, “Peramalan nilai tukar rupiah terhadap dollar amerika dengan menggunakan metode autoregressive integrated moving average (arima),” Jambura Journal of Probability and Statistics, vol. 3, no. 2, pp. 71–84, 2022.

W. Y. Rusyida and V. Y. Pratama, “Prediksi harga saham garuda indonesia di tengah pandemi covid-19 menggunakan metode arima,” Square: Journal of Mathematics and Mathematics Education, vol. 2, no. 1, pp. 73–81, 2020.

J. Saputra and A. Simanjuntak, “Estimating the expected shortfall in myor stock using the arima-garch model,” International Journal of Global Operations Research, vol. 2, no. 3, pp. 118–123, 2021.

E. Harun et al., “Analisis laporan keuangan sebagai bukti pengukuran kinerja pada pt goto gojek tokopedia tbk tahun 2021,” Value, vol. 3, no. 1, pp. 82– 89, 2022.

T. Wulandari, “Saham goto menyentuh auto reject bawah (arb), saatnya sell atau buy,” Jurnal Ecoment Global, vol. 8, no. 1, pp. 30–34, 2023.

S. E. Sukono, A. Simanjuntak, A. Santoso, P. L. Ghazali, and A. T. Bon, “Arimagarch model for estimation of value-at-risk and expected shortfall of some stocks in indonesian capital market,” in Proceedings of the International Conference on Industrial Engineering and Operations Management Riyadh, Saudi Arabia, 2019, pp. 327–334.

Y. I. Ajunu, N. ACHMAD, and M. R. F. PAYU, “Perbandingan metode autoregressive integrated moving average dan metode double exponential smoothing dari holt dalam meramalkan nilai impor di indonesia,” Jambura Journal Of Probability And Statistics, vol. 1, no. 1, pp. 37–46, 2020.

K. Dowd, An introduction to market risk measurement. John Wiley & Sons, 2002.

A. J. Patton, J. F. Ziegel, and R. Chen, “Dynamic semiparametric models for expected shortfall (and value-at-risk),” Journal of econometrics, vol. 211, no. 2, pp. 388–413, 2019.

T. Yunita, “Peramalan jumlah penggunaan kuota internet menggunakan metode autoregressive integrated moving average (arima),” Journal of Mathematics: Theory and Applications, pp. 16–22, 2020.

S. Setyowibowo, M. As’ad, S. Sujito, and E. Farida, “Forecasting of daily gold price using arima-garch hybrid model,” J. Ekon. Pembang, vol. 19, no. 2, pp. 257–270, 2022.

I. K. Hasan, I. Djakaria, and D. N. A. Karim, “Perbandingan model arch (1) dan garch (1, 1) ditinjau dari perilaku kurtosis dan fungsi autokorelasi,” Jambura Journal of Mathematics, vol. 2, no. 2, pp. 97–107, 2020.

Loui, “Estimation and performance assessment of value-at-risk and expected shortfall based on long-memory garch-class models.” Finance a Uver: Czech Journal of Economics & Finance, vol. 65, no. 1, pp. 30–54, 2015.

Y. Saepudin, H. Yasin, and R. Santoso, “Analisis risiko investasi saham tunggal syariah dengan value at risk (var) dan expected shortfall (es),” Jurnal Gaussian, vol. 6, no. 2, pp. 271–280, 2017.

C. M. Jarque and A. K. Bera, “Efficient tests for normality, homoscedasticity and serial independence of regression residuals,” Economics letters, vol. 6, no. 3, pp. 255–259, 1980.

H. Situngkir, “Value-at-risk that pays attention to the statistical nature of the return distribution,” 2006.

B. U. Devi, D. Sundar, and P. Alli, “An effective time series analysis for stock trend prediction using arima model for nifty midcap-50,” International Journal of Data Mining & Knowledge Management Process, vol. 3, no. 1, p. 65, 2013.

B. S. Sukono, H. Napitupulu, Y. Hidayat, A. S. Putra, and A. T. Bon, “Valueat-risk and modified value-at-risk under asset liability by using time series approach.”

P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, “Coherent measures of risk,” Mathematical finance, vol. 9, no. 3, pp. 203–228, 1999.

S. Patra, “Revisiting value-at-risk and expected shortfall in oil markets under structural breaks: The role of fat-tailed distributions,” Energy Economics, vol. 101, p. 105452, 2021.




DOI: https://doi.org/10.37905/jjps.v5i2.22552

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jambura Journal of Probability and Statistics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Editorial Office of Jambura Journal of Probability and Statistics:
 
Department of Statistics, 3rd Floor Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B.J Habibie, Tilongkabila Kabupaten Bone Bolango, 96119
Telp: +6285398740008 (Call/SMS/WA)
E-mail: redaksi.jjps@ung.ac.id