Prediksi Laju Inflasi dengan Metode Long Short-Term Memory (LSTM) Berdasarkan Data Laju Inflasi dan Pengeluaran Kota Ternate

Frangky Aristiadi masipupu, Adi setiawan, Bambang Susanto

Abstract


Inflation is one of the main indicators that reflect the economic stability of a region. Ternate City, as one of the cities in North Maluku Province, exhibits fluctuating inflation dynamics from year to year. This study aims to forecast the inflation rate in Ternate using the Long Short-Term Memory (LSTM) method, which is a neural network architecture well-suited for processing time series data. The data used consists of monthly Consumer Price Index (CPI) figures for Ternate from 2016 to 2023, obtained from the Central Bureau of Statistics (BPS). The LSTM model was trained using monthly CPI changes as the basis for calculating inflation. The model evaluation results show a Root Mean Square Error (RMSE) of 0.9275, Mean Absolute Error (MAE) of 0.8369, and Mean Absolute Percentage Error (MAPE) of 20.13%. These results indicate that the LSTM model performs well in forecasting inflation in Ternate City and can be utilized as a decision-support tool in regional economic planning and policymaking. 
  

Keywords


Long Short-Term Memory (LSTM); Inflation data; Spending; Prediction; Time series.

Full Text:

PDF

References


Suseno and Astiyah, Inflasi. Bank Indonesia, 2009.

M. H. Meiditambua, S. A. Centauri, and M. R. Fahlevi, “Pengaruh inflasi terhadap pertumbuhan ekonomi: perspektif indonesia,” Jurnal Acitya Ardana, vol. 3, no. 1, pp. 17–26, 2023.

S. Djambek, “Faktor dominan mempengaruhi inflasi di indonesia,” Jurnal Ekonomi Pembangunan, vol. 6, no. 1, pp. 23–38, 2008.

E. F. B. Simanungkalit, “Pengaruh inflasi terhadap pertumbuhan ekonomi di indonesia,” Journal of Management: Small and Medium Enterprises (SMEs), vol. 13, no. 3, pp. 327–340, 2020.

R. Kurniawan, “Hubungan inflasi indeks harga konsumen, tingkat suku bunga, produk domestik bruto, serta nilai tukar di indonesia,” Populer: Jurnal Penelitian Mahasiswa, vol. 1, no. 4, pp. 49–61, 2022.

B. A. H. Kholifatullah and A. Prihanto, “Penerapan metode long short term memory untuk klasifikasi pada hate speech,” Journal of Informatics and Computer Science (JINACS), pp. 292–297, 2023.

S. Zahara, M. B. Ilmiddafiq et al., “Prediksi indeks harga konsumen menggunakan metode long short term memory (lstm) berbasis cloud computing,” Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 3, no. 3, pp. 357– 363, 2019.

S. li, “Inflation forecasting using a hybrid lstm-sarima model based on discrete wavelet transform,” Advances in Economics Management and Political Sciences, vol. 73, no. 1, 2024.

L. Wiranda and M. Sadikin, “Penerapan long short term memory pada data time series untuk memprediksi penjualan produk pt. metiska farma,” Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI, vol. 8, no. 3, pp. 184–196, 2019.

E. Arif, E. Herlinawati, D. Devianto, M. Yollanda, and D. Permana, “Hybridization of long short-term memory neural network in fractional time series modeling of inflation,” Frontiers in big Data, vol. 6, p. 1282541, 2024.

X.-H. Le, H. V. Ho, G. Lee, and S. Jung, “Application of long short-term memory (lstm) neural network for flood forecasting,” Water, vol. 11, no. 7, p. 1387, 2019.

M. M. Taye, “Understanding of machine learning with deep learning: architectures, workflow, applications and future directions,” Computers, vol. 12, no. 5, p. 91, 2023.

I. L. Widiastuti, “Pengaruh jumlah uang beredar terhadap inflasi di indonesia bulan januari 2001–desember 2011: Pendekatan error correction model (ecm),” Ph.D. dissertation, UAJY, 2012.

L. D. Arumningsih and M. Y. Darsyah, “Peramalan indeks harga konsumen kota malang tahun 2014–2016 dengan menggunakan metode moving average dan exponential smoothing holt-winter,” in Prosiding Seminar Nasional Mahasiswa Unimus, vol. 1, 2018.

B. K. MANDA, “Analisis empiris hubungan kausalitas antara pengeluaran pemerintah dan inflasi di indonesia,” FAKULTAS EKONOMI DAN BISNIS, 2023.

H. S. Bambang et al., “Analisis prilaku inflasi negara indonesia tinjauan historis ekonomi dalam pusara ekonomi kerakyatan,” 2023.

M. R. Firmansyah, R. Ilyas, and F. Kasyidi, “Klasifikasi kalimat ilmiah menggunakan recurrent neural network,” in Prosiding Industrial Research Workshop and National Seminar, vol. 11, no. 1, 2020, pp. 488–495.

A. Z. Arham, “Klasifikasi ulasan buku menggunakan algoritma convolutional neural network-long short term memory,” Ph.D. dissertation, Institut Teknologi Sepuluh Nopember, 2018.

D. Aisyah, T. W. Purboyo, and M. Kallista, “Prediksi penderita tuberkulosis dengan algoritma long short-term memory,” eProceedings of Engineering, vol. 10, no. 1, 2023.

T. E. Sutanto et al., “Analisis model lstm dalam peramalan sistem dinamis chaotic persamaan diferensial keuangan,” B.S. thesis, Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta, 2023.

A. Afriyudi, “Prediksi jumlah siswa baru dengan menggunakan metode exponential smoothing (studi kasus: Smk ethika palembang),” PREDIKSI JUMLAH SISWA BARU DENGAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING (STUDI KASUS: SMK ETHIKA PALEMBANG), 2022.

R. Oktafiani, A. Hermawan, and D. Avianto, “Pengaruh komposisi split data terhadap performa klasifikasi penyakit kanker payudara menggunakan algoritma machine learning,” Jurnal Sains dan Informatika, pp. 19–28, 2023.

X. Ying, “An overview of overfitting and its solutions,” in Journal of physics: Conference series, vol. 1168. IOP Publishing, 2019, p. 022022.

T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean absolute error (mae)?–arguments against avoiding rmse in the literature,” Geoscientific model development, vol. 7, no. 3, pp. 1247–1250, 2014.

T. O. Hodson, “Root mean square error (rmse) or mean absolute error (mae): When to use them or not,” Geoscientific Model Development Discussions, vol. 2022, pp. 1–10, 2022.

R. Luthfiansyah and B. Wasito, “Penerapan teknik deep learning (long short term memory) dan pendekatan klasik (regresi linier) dalam prediksi pergerakan saham bri,” Jurnal Informatika dan Bisnis, vol. 12, no. 2, pp. 42–54, 2023.

A. Khumaidi and I. Ayu Nirmala, “Algoritma long short term memory dengan hyperparameter tuning: Prediksi penjualan produk,” 2022.

D. A. Swanson, J. Tayman, and T. Bryan, “Mape-r: a rescaled measure of accuracy for cross-sectional subnational population forecasts,” Journal of Population Research, vol. 28, pp. 225–243, 2011.

B. D. Prasetya, F. S. Pamungkas, and I. Kharisudin, “Pemodelan dan peramalan data saham dengan analisis time series menggunakan python,” in PRISMA, Prosiding Seminar Nasional Matematika, vol. 3, 2020, pp. 714–718.

D. I. Purnama and O. P. Hendarsin, “Peramalan jumlah penumpang berangkat melalui transportasi udara di sulawesi tengah menggunakan support vector regression (svr),” Jambura Journal of Mathematics, vol. 2, no. 2, pp. 49–59, 202




DOI: https://doi.org/10.37905/jjps.v6i1.30627

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jambura Journal of Probability and Statistics

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Editorial Office of Jambura Journal of Probability and Statistics:
 
Department of Statistics, 3rd Floor Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B.J Habibie, Tilongkabila Kabupaten Bone Bolango, 96119
Telp: +6285398740008 (Call/SMS/WA)
E-mail: [email protected]