Analisis Gerak Partikel dalam Ruang Waktu Lengkung dengan Fungsi Green

Yamin Ismail, Abas Kaluku


Motion of particle in curved spacetime as generalization of flat space-time with metric gµʋ the motion in this article is scalar charge q, electric charge e,and particle mass m will produce field that can have the behavior as a radiation zone of electromagnetic wave, by applying Maxwell equation on Green function motion of particle is represented in form of acceleration that can be determined.


Geodesic; Metric; Particle; Green Function

Full Text:



S. M. Carroll, Lecture Notes on General Relativity. Chicago: Enrico Fermi Institute, University of Chicago, 1997.

N. Chernokov, “Two Connections in The Gravity Theory,” Discuss. J. Gravitational Phys., vol. 2, no. 1, 1997.

S. M. Wagh, “The Significance of the General Principle of Relativity,” arXiv:physics/0502088, 2005, doi:

L. Barack, “Gravitational self-force by mode sum regularization,” Phys. Rev. D, vol. 64, no. 8, p. 084021, Sep. 2001, doi: 10.1103/PhysRevD.64.084021.

Y. Mino, M. Sasaki, and T. Tanaka, “Gravitational radiation reaction to a particle motion,” Phys. Rev. D-Part. Fields, Gravit. Cosmol., vol. 55, no. 6, pp. 3457–3476, 1997, doi: 10.1103/PhysRevD.55.3457.

T. C. Quinn, “Axiomatic approach to radiation reaction of scalar point particles in curved spacetime,” Phys. Rev. D, vol. 62, no. 6, p. 064029, Aug. 2000, doi: 10.1103/PhysRevD.62.064029.

T. C. Quinn and R. M. Wald, “Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime,” Phys. Rev. D, vol. 56, no. 6, pp. 3381–3394, Sep. 1997, doi: 10.1103/PhysRevD.56.3381.

L. Barack, Y. Mino, H. Nakano, A. Ori, and M. Sasaki, “Calculating the Gravitational Self-Force in Schwarzschild Spacetime,” Phys. Rev. Lett., vol. 88, no. 9, p. 091101, Feb. 2002, doi: 10.1103/PhysRevLett.88.091101.

S. Detweiler, “Radiation Reaction and the Self-Force for a Point Mass in General Relativity,” Phys. Rev. Lett., vol. 86, no. 10, pp. 1931–1934, Mar. 2001, doi: 10.1103/PhysRevLett.86.1931.

S. Detweiler and B. F. Whiting, “Self-force via a Green’s function decomposition,” Phys. Rev. D, vol. 67, no. 2, p. 024025, Jan. 2003, doi: 10.1103/PhysRevD.67.024025.

M. J. Pfenning and E. Poisson, “Scalar, electromagnetic, and gravitational self-forces in weakly curved spacetimes,” Phys. Rev. D, vol. 65, no. 8, p. 084001, Mar. 2002, doi: 10.1103/PhysRevD.65.084001.

L. Barack, “Self-force on a scalar particle in spherically symmetric spacetime via mode-sum regularization: Radial trajectories,” Phys. Rev. D, vol. 62, no. 8, p. 084027, Sep. 2000, doi: 10.1103/PhysRevD.62.084027.



  • There are currently no refbacks.

Copyright (c) 2022 Yamin Ismail, Abas Kaluku

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 +62-852-55230451 (Call/SMS/WA)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.