Pelabelan Antiajaib Berdasarkan Jarak pada Operasi Perkalian Tensor Graf

Christyan Tamaro Nadeak

Abstract


Let  be a graph of order n. Let  be a bijection. For any vertex , the neighbor sum  is called the weight of the vertex  and is denoted by where N(v) is the open neighborhood of If  for any two distinct vertices  and then f is called a distance antimagic labelling. If the graph G admits such a labelling, then G is said to be a distance antimagic graph. This study gives a distance antimagic labelling for tensor product of two complete graph and sufficient condition so that the tensor product of a regular graph and complete graph is a distance antimagic graph.

Keywords


Distance Antimagic Labeling; Tensor Product; Complete Graph

Full Text:

PDF

References


V. Vilfred, "Sigma Labelled Graphs and Circulant Graphs," University of Kerala, India, 1994.

M. Miller, C. Rodger, and R. Simanjuntak, "Distance Magic Labelings of Graphs", Australasian Journal of Combinatorics, vol. 28, pp. 305-315, 2003.

S. Arumugam, N. Kamatchi, "On (a;d)-Distance Antimagic Graphs", Australasian J. Combinat, 54, 279-287, 2012.

N. Kamatchi, G. R. Vijayakumar, A. Ramalakshmi, S. Nilavarasi, S. Arumugam, "Distance Antimagic Labelings of Graphs", Lect. Notes Comp. Sci, 10398, 113–118, 2017.

D. E Wijayanti, A. Thobirin, "Pelabelan Anti Ajaib Jarak Pada Suatu Graf Petersen Diperumum", Jurnal Ilmiah Matematika dan Pendidikan Matematika, vol. 12, pp. 279-287, 2020.

S. Arumugam and N. Kamatchi. "Distance Antimagic Graphs", J. Combinat. Math. Combinat. Comput., vol. 64, pp. 61-67, 2013.

R. Simanjuntak and Kristiana Wijaya. "On distance antimagic graphs." arXiv preprint arXiv:1312.7405, 2013. doi: https://doi.org/10.48550/arXiv.1312.7405

R. Simanjuntak, T. Nadeak, F. Yasin, K. Wijaya, N. Hinding, K.A. Sugeng, "Another Antimagic Conjecture", Symmetry, vol 13, 2021. doi: https://doi.org/10.3390/sym13112071

C. T. Nadeak, "Pelabelan Antiajaib berdasarkan Jarak," Institut Teknologi Bandung, 2015.

A.K. Handa, A. Godinho, T. Singh, S. Arumugam, "Distance antimagic labeling of join and corona of two graphs". AKCE Int. J. Graphs Comb, vol. 14, 172–177, 2017. doi: https://doi.org/10.1016/j.akcej.2017.04.003

N. J. Cutinho, S. Sudha, and S. Arumugam, "Distance antimagic labelings of Cartesian product of graphs, AKCE International Journal of Graphs and Combinatorics", 17:3, 940-942, 2020. doi: 10.1016/j.akcej.2019.08.005

R. Simanjuntak, A. Tritama, "Distance Antimagic Product Graphs", Symmetry, 14(7):1411, 2022. https://doi.org/10.3390/sym14071411

R. Diestel, Graph Theory. Springer-Verlag Heidelberg. 2005.

W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition. Wiley, 2000.




DOI: https://doi.org/10.34312/euler.v10i2.16298

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Christyan Tamaro Nadeak

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +62-852-55230451 (Call/SMS/WA)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.