Implementasi Long Short Term Memory (LSTM) dan Bidirectional Long Short Term Memory (BiLSTM) Dalam Prediksi Harga Saham Syariah
Abstract
Keywords
Full Text:
PDFReferences
Kustodian Sentral Efek Indonesia, “Statistik Pasar Modal Indonesia.” https://www.ksei.co.id/publications/demografi_investor (accessed May 15, 2023).
G. Budiprasetyo, M. Hani’ah, and D. Z. Aflah, “Prediksi Harga Saham Syariah Menggunakan Algoritma Long Short-Term Memory (LSTM),” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 8, no. 3, pp. 164–172, 2022, doi: 10.25077/TEKNOSI.v8i3.2022.164-172.
A. Nilsen, “Perbandingan Model RNN, Model LSTM, dan Model GRU dalam Memprediksi Harga Saham-Saham LQ45,” Jurnal Statistika dan Aplikasinya, vol. 6, no. 1, pp. 137–147, 2022, doi: 10.21009/JSA.06113.
R. Hutauruk and D. Fitrianah, “Komparasi metode Long Short Term Memory (LSTM) dan 1D CNN Dalam Prediksi Harga Saham Pada Salah Satu Perusahaan Sektor Consumer Goods,” Universitas Mercu Buana, Jakarta, 2022.
R. S. Pontoh et al., “Jakarta Pandemic to Endemic Transition: Forecasting COVID-19 Using NNAR and LSTM,” Applied Sciences, 2022, doi: 10.3390/app12125771.
N. Afrianto, D. H. Fudholi, and S. Rani, “Prediksi Harga Saham Menggunakan BiLSTM dengan Faktor Sentimen Publik,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 41–46, 2022, doi: 10.29207/resti.v6i1.3676.
M. Jia, J. Huang, L. Pang, and Q. Zhao, “Analysis and Research on Stock Price of LSTM and Bidirectional LSTM Neural Network,” in dvances in Computer Science Research (ACSR), Atlantis Press, 2019, pp. 467–473, doi: 10.2991/iccia-19.2019.72.
S. S. Namini, N. Tavakoli, and A. S. Namin, “The Performance of LSTM and BiLSTM in Forecasting Time Series,” presented at the IEEE International Conference on Big Data, 2019.
Y. Karyadi and H. Santoso, “Prediksi Kualitas Udara Dengan Metoda LSTM, Bidirectional LSTM, dan GRU,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 1, pp. 671–684, 2022, doi: 10.35957/jatisi.v9i1.1588.
F. Masri, D. Saepudin, and D. Adytia, “Forecasting of Sea Level Time Series using Deep Learning RNN, LSTM, and BiLSTM, Case Study in Jakarta Bay, Indonesia,” presented at the e-Proceeding of Engineering, vol. 7. 2020, pp. 8544–8551.
A. B. Said, A. Erradi, H. A. Aly, and A. Mohamed, “Predicting COVID-19 cases using bidirectional LSTM on multivariate time series,” Environ Sci Pollut Res, vol. 28, no. 40, pp. 56043–56052, Oct. 2021, doi: 10.1007/s11356-021-14286-7.
M. Yang and J. Wang, “Adaptability of Financial Time Series Prediction Based on BiLSTM,” presented at the The 8 th International Conference on Information Technology and Quantitative Management (ITQM 2020 & 2021), Procedia Computer Science, 2022, pp. 18–25.
J. J. M. Moreno, A. P. Pol, A. S. Abad, and B. C. Blasco, “Using the R-MAPE index as a resistant measure of forecast accuracy,” Psicothema, vol. 25, no. 4, pp. 500–506, 2013, doi: 10.7334/psicothema2013.23.
C. Olah, “Understanding LSTM Networks,” 2015. https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (accessed May 18, 2023).
Z. Cui, R. Ke, Z. Pu, and Y. Wang, “Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values,” Transportation Research Part C: Emerging Technologies, vol. 118, pp. 1–14, 2020, doi: 10.1016/j.trc.2020.102674.
Z. Hameed and B. G. Zapirain, “Sentiment Classification Using a Single-Layered BiLSTM Model,” IEEE Access, vol. 8, pp. 73992–74001, 2020, doi: 10.1109/ACCESS.2020.2988550.
DOI: https://doi.org/10.34312/euler.v11i1.19791
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Dian Islamiaty Puteri
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:
EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI |
Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia |
Email: euler@ung.ac.id |
+6287743200854 (WhatsApp Only) |
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. |