Penerapan Model Regresi Linear Untuk Estimasi Mobil Bekas Menggunakan Bahasa Python

Mohamad Arif, Muhammad Faisal

Abstract


Used cars have a significant transaction value in the automotive market. Estimating the price of a used car is important for buyers and sellers to determine the appropriate value. In this study, we apply a linear regression model using the Python programming language to estimate the price of a used car based on relevant attributes such as year of production, mileage, car tax, fuel consumption, and number of engines. We use a used car dataset that contains important information for analysis. In using the linear regression model in this study, it was successful in obtaining an accuracy of 0.76% and the results for estimating car prices were obtained by inputting car year = 2019, car mileage = 5000, car tax = 145, fuel consumption = 30,2, and engine size = 2. Then managed to get an estimated value of 21.208,505 in Pounds and 393.608,6514549 in Rupiah units. So that it can be said that the Linear Regression model has proven successful in the good category for finding used car price estimates based on certain factors using python language.

Keywords


Python; Regression; Linear; Estimation; Price; Data

Full Text:

PDF

References


E. Dewi, S. Mulyani, F. Mulady, D. Ramadhan, A. Ariyantono, and D. Ramdani, “Estimasi Harga Jual Mobil Bekas Menggunakan Metode Regresi Linier Berganda,” e-Jurnal JUSITI (Jurnal Sist. Inf. dan Teknol. Informasi), vol. 9, no. 1, pp. 1–8, 2020, doi: 10.36774/jusiti.v9i1.649.

I. Syahputra, “Analisis Perkiraan Harga Mobil LCGC Bekas Pasca Pandemi Covid-19 dengan Fuzzy Mamdani di Kota Langsa,” vol. 3, no. 2, pp. 2–7, 2022.

N. Ekawati and A. P. Salamena, “Menentukan Harga Jual Mobil Bekas Menggunakan Fuzzy Logic Metode Sugeno Determining the Selling Price of a Used Car Using the Fuzzy Logic Sugeno Method,” vol. 10, no. 2, 2022.

S. Maryam, E. Bu’ulolo, and E. Hatmi, “Penerapan Metode Fuzzy Mamdani dan Fuzzy Tsukamoto Dalam Menentukan Harga Mobil Bekas,” J. Informatics, Electr. Electron. Eng., vol. 1, no. 1, pp. 10–14, 2021, [Online]. Available: https://djournals.com/jieee/article/view/54%0Ahttps://djournals.com/jieee/article/download/54/164

Y. A. E. Tuah and A. Anyan, “Implementasi Model Regresi Linear Sederhana Untuk Prediksi Gaji Berdasarkan Pengalaman Lama Bekerja,” JUTECH J. Educ. Technol., vol. 1, no. 2, pp. 56–70, 2020, doi: 10.31932/jutech.v1i2.1289.

N. Nafi’iyah, “Penerapan regresi linear dalam memprediksi harga jual mobil bekas,” pp. 1–5, 2015.

E. D. Sri Mulyani et al., “Estimasi Pertumbuhan Penduduk Di Kabupaten Tasikmalaya Menggunakan Metode Regresi Linear Berganda,” Infosys (Information Syst. J., vol. 6, no. 1, p. 1, 2021, doi: 10.22303/infosys.6.1.2021.1-11.

Y. Syahra, I. Santoso, and R. Kustini, “Implementasi Data Mining Untuk Prediksi Angka Kelahiran Bayi Pada Desa Sibolangit Menggunakan Multi Regresi,” Semin. Nas. Sains Teknol. Inf., no. 1, pp. 687–690, 2019.

P. Susanti and K. Sussolaikah, “Penerapan Metode Regresi Linear Untuk Memprediksi Harga Jual Mobil Bekas Yaris Dan Jazz Pada Wilayah Dki Jakarta Application of Linear Regression Method To Predictable the Selling Price of Yaris and Jazz Brand Car in the Dki Jakarta Area,” J. Ilm. NERO, vol. 7, no. 2, p. 2022, 2022.

A. M. M. Fattah, A. Voutama, N. Heryana, and N. Sulistiyowati, “Pengembangan Model Machine Learning Regresi sebagai Web Service untuk Prediksi Harga Pembelian Mobil dengan Metode CRISP-DM,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1669, 2022, doi: 10.30865/jurikom.v9i5.5021.

M. Sholeh, E. K. Nurnawati, and U. Lestari, “Penerapan Data Mining dengan Metode Regresi Linear untuk Memprediksi Data Nilai Hasil Ujian Menggunakan RapidMiner,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 8, no. 1, pp. 10–21, 2023, doi: 10.14421/jiska.2023.8.1.10-21.

A. A.-F. Nur Wahyudin, A. Primajaya, and A. S. Y. Irawan, “Penerapan Algoritma Regresi Linear Berganda Pada Estimasi Penjualan Mobil Astra Isuzu,” Techno.Com, vol. 19, no. 4, pp. 364–374, 2020, doi: 10.33633/tc.v19i4.3834.

A. Pambudi, “Penerapan Crisp-Dm Menggunakan Mlr K-Fold Pada Data Saham Pt. Telkom Indonesia (Persero) Tbk (Tlkm) (Studi Kasus: Bursa Efek Indonesia Tahun 2015-2022),” J. Data Min. dan Sist. Inf., vol. 4, no. 1, p. 1, 2023, doi: 10.33365/jdmsi.v4i1.2462.

A. K. Rotty, T. S. Dewayana, and A. N. Habyba, “Cross-Industry Standard Process for Data Mining (CRISP-DM) Approach in Determining the Most Significant Employee Engagement Drivers to Sales at X Car Dealership,” pp. 3368–3379, 2022.

N. Almumtazah, N. Azizah, Y. L. Putri, and D. C. R. Novitasari, “Prediksi Jumlah Mahasiswa Baru Menggunakan Metode Regresi Linier Sederhana,” J. Ilm. Mat. Dan Terap., vol. 18, no. 1, pp. 31–40, 2021, doi: 10.22487/2540766x.2021.v18.i1.15465.




DOI: https://doi.org/10.37905/euler.v11i2.20698

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Mohamad Arif, Muhammad Faisal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (Call/SMS/WA)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.