Perbandingan Metode Fuzzy C-Means dan Ward Pada Pengelompokkan Desa Berdasarkan Indikator Potensi Desa

Ingka Rizkyani Akolo, Apriliyanus Rakhmadi Pratama, Asriyati Nadjamuddin

Abstract


Bone Bolango is one of the districts that has experienced many village and sub-district expansion processes. This expansion process changes the village's potential data. Village potential is the carrying capacity for developing villages in order to improve community welfare. In order to accelerate village development, it is necessary to group villages according to their characteristics so that development is more focused and on target. The aim of this research is to group villages based on indicators of village potential so that groups of villages that have the same characteristics can be obtained, as well as to find out the best method for grouping villages in Bone Bolango Regency. The research results show that the optimum cluster for grouping villages in Bone Bolango Regency based on village potential indicators is the cluster using the ward method because it provides the smallest Xie-Beni index value compared to the fuzzy c-means method. The optimum number of clusters is three clusters. Cluster 1 has high average characteristics consisting of 57 villages, cluster 2 has low average characteristics (except livestock production) consisting of 94 villages and cluster 3 has characteristics of large area and high food production consisting of 9 villages.

Keywords


Cluster; Fuzzy C-Means; Ward; Village Potential

Full Text:

PDF

References


K. Endah, “Pemberdayaan Masyarakat : Menggali Potensi Lokal Desa,” vol. 6, no. 1, pp. 135–143, 2020, doi: 10.25157/moderat.v6i1.3319.

E. Muningsih, I. Maryani, and V. R. Handayani, “Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa,” vol. 9, no. 1, pp. 95–100, 2021, doi: 10.31294/evolusi.v9i1.10428.

M. B. Johra, “Soft Clustering dengan Algoritma Fuzzy K-Means (Studi Kasus : Pengelompokkan Desa di Kota Tidore Kepulauan),” J. Barekeng, vol. 15, no. 2, pp. 385–392, 2021, doi: https://doi.org/10.30598/barekengvol15iss2pp385-392.

A. N. Fathia, “Analisis Klaster Kecamatan di Kabupaten Semarang Berdasarkan Potensi Desa Menggunakan Metode Ward dan Single Linkage Disusun oleh : NIM : Annisa Nur Fathia,” Universitas Diponegoro, 2016. [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/article/download/17109/16391

S. Arfah, “Pengelompokkan Kecamatan Berdasarkan Potensi Desa di Kabupaten Parigi Moutong menggunakan Metode Ward dan Complete Linkage,” Universitas Tadulako, 2020. [Online]. Available: http://repository.untad.ac.id/id/eprint/4965

T. Pribadi, R. Irsyada, H. Audytra, and D. A. Fatah, “Implementasi Algoritma K-Means untuk Klasterisasi Potensi Desa pada Sektor Produksi Pertanian di Kabupaten Bojonegoro,” J. Simantec, vol. 9, no. 1, pp. 20–28, 2020, doi: https://doi.org/10.21107/simantec.v9i1.9006.

S. Mashfuufah and D. Istiawan, “Penerapan Partition Entropy Index , Partition Coefficient Index dan Xie BeniIndex untuk Penentuan Jumlah Klaster Optimal pada Algoritma Fuzzy C-Means dalam Pemetaan Tingkat Kesejahteraan Penduduk Jawa Tengah,” in Proceeding of the 7thUniversity Research Colloqium, 2018, pp. 51–60. [Online]. Available: http://repository.urecol.org/index.php/proceeding/article/view/156

E. Rouza and L. Fomawahib, “Implementasi Fuzzy C-Means Clustering dalam Pengelompokkan UKM di Kabupaten Rokan Hulu,” J. Techno. COM, vol. 19, no. 4, pp. 481–495, 2020, doi: https://doi.org/10.33633/tc.v19i4.4101.

Imasdiani, I. Purnamasari, and D. Tisna, “Perbandingan Hasil Analisis Cluster Dengan Menggunakan Metode Average Linkage Dan Metode Ward ( Studi Kasus : Kemiskinan Di Provinsi Kalimantan Timur Tahun 2018 ) Comparison Of Cluster Analysis Results Using Average Linkage Method And Ward Method ( Case S,” J. Eksponensial, vol. 13, no. 1, pp. 9–18, 2022, doi: https://doi.org/10.30872/eksponensial.v13i1.875.

R. Rahmati and A. W. Wijayanto, “Analisis Cluster dengan Algoritma K-Means, Fuzzy C-Means dan Hierarchical Clustering (Studi Kasus: Indeks Pembangunan Manusia Tahun 2019),” J. Inform. dan Komput., vol. 5, no. 2, pp. 73–80, 2021, doi: 10.26798/jiko.v5i2.422.

L. Laome et al., “Pengelompokkan desa berdasarkan indikator kesehatan dan peternakan dengan metode ward pada analisis gerombol berhierarki (studi kasus: kecamatan ranometo, kabupaten konsel, sulawesi tenggara),” in Seminar Nasional Teknologi Terapan Inovasi dan Rekayasa (SNT2IR), 2019, pp. 191–197. [Online]. Available: https://ojs.uho.ac.id/index.php/snt2bkl/article/view/9856/7094

R. Siringoringo and Jamaluddin, “Peningkatan Performa Cluster Fuzzy C-Means pada Pengklasteran Sentimen menggunakan Particle Swarm Optimization,” J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 4, pp. 349–354, 2019, doi: 10.25126/jtiik.2018561090.

D. L. Rahakbauw, V. Y. I. Ilwaru, and M. H. Hahury, “Implementation of fuzzy c-means clustering in scholarship determination,” J. Ilmu Mat. dan Terap., vol. 11, no. 1, pp. 1–12, 2017, doi: https://doi.org/10.30598/barekengvol11iss1pp1-12.

Y. I. Harnanto, A. Rusgiyono, and T. Wuryandari, “Penerapan Analisis Klaster Metode Ward Terhadap Kabupaten/Kota di Jawa Tengah Berdasarkan Pengguna Alat Kontrasepsi,” J. Gaussian, vol. 6, no. 4, pp. 528–537, 2017, doi: 10.14710/j.gauss.6.4.528-537.

M. Paramadina and M. K. Aidid, “Perbandingan Analisis Cluster Metode Average Linkage dan Metode Ward ( Kasus : IPM Provinsi Sulawesi Selatan ),” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 1, no. 2, pp. 22–31, 2019, doi: 10.35580/variansiunm9357.

Y. S. Firdaus, R. Narendra, and A. Sanwidi, “Klaster Daerah Kesejahteraan pada Masa Pandemi Covid -19 di Jawa Timur dengan Metode Fuzzy C-Means Clustering,” J. Stat., vol. 22, no. 2, pp. 195–202, 2022, doi: https://doi.org/10.29313/statistika.v22i2.1581.




DOI: https://doi.org/10.37905/euler.v11i2.21820

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ingka Rizkyani Akolo, Apriliyanus Rakhmadi Pratama, Asriyati Nadjamuddin

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor