Komparasi Skema Numerik Euler, Runge-Kutta dan Adam-Basforth-Moulton untuk Menyelesaikan Solusi Persamaan Osilator Harmonik

Resmawan Resmawan, Binti Mualifatul Rosydah, Rizka Putri Handayani

Abstract


This article discusses the comparison of different numerical schemes to visualize the solution of 2nd-order differential equations. One-step methods such as the Euler method and the 4th-order Runge-Kutta method are combined with the 3rd-order Adam-Bashforth-Moulton method to solve the solution of 2nd-order differential equations. This combination of methods solves the Harmonic Oscillator equation, an 2nd-order differential equation widely applied in various oscillation contexts. The order of accuracy and order of approximation error are determined analytically. Finally, simulations are given with different steps for the three methods to confirm the behavior of the solution to the Harmonic Oscillator equation. The results show that the Euler method with the lowest order of accuracy has good accuracy at the beginning of the oscillation but not when time t is increased. The Runge-Kutta method, with the highest order of accuracy, shows excellent and consistent accuracy and solution stability, while the Adam-Bashforth-Moulton method, although it has a lower accuracy than the Runge-Kutta method of order 4, can be improved by choosing a one-step method with a high order of accuracy to approximate some of the required initial solutions. All three methods can provide approximation values with excellent accuracy and stability if a small step, h, is chosen, but this step can increase the time duration to display the solution. Thus, it is necessary to choose the right h according to the context of the equation and the method used to obtain accurate solutions with optimal time duration.

Keywords


Euler; Runge-Kutta; Adam-Bashforth-Moulton; Harmonic Oscillator; Differential Equations

Full Text:

PDF

References


D. I. Lanlege, U. M. Garba, and A. Aluebho, “Using Modified Euler Method (MEM) for the solution of some First Order Differential Equations with Initial Value Problems (IVPs),” Pacific Journal of science and technology, vol. 16, no. 2, pp. 63-81, 2015.

R. U. Hurit dan B. B. F. Resi, “Penyelesaian Model SIR untuk Penyebaran Penyakit Hiv/Aids Menggunakan Metode Euler dan Metode Heun,” in ProSANDIKA UNIKAL (Prosiding Seminar Nasional Pendidikan Matematika Universitas Pekalongan), 2022, pp. 381-390.

A. Prahmono, N. Nurhamidah, dan N. Nurhamidah, “Solusi Numerik Menggunakan Metode Euler Untuk Persamaan Gerak Jatuh Bebas Tanpa Gesekan Udara Pada Microsoft Excel 2013,” Al ’Ilmi: Jurnal Pendidikan MIPA, vol. 12, no. 1, pp. 27-32, 2023.

Y. Enkekes dan L. Mardianto, “Metode Runge-Kutta Orde 4 Dalam Penyelesaian Persamaan Gelombang 1D Syarat Batas Dirichlet,” Indonesian Journal Of Applied Mathematics, vol. 2, no. 1, pp. 1-8, 2022. doi: https://doi.org/10.35472/indojam.v2i1.489.

L. Trifina, A. Warsito, L. Lapono, dan A. Louk, “Visualisasi Fenomena Harmonis Dan Chaos Pada Getaran Tergandeng Berbasis Komputasi Numerik Runge Kutta,” Jurnal Fisika: Fisika Sains dan Aplikasinya, vol. 8, no. 1, pp. 11-20, 2023. doi: https://doi.org/10.35508/fisa.v8i1.11817.

C. H. K. Yion, “SIR integrated model based on Runge-Kutta for Polio Vaccination Analysis,” Journal of Quality Measurement and Analysis JQMA, vol. 19, no. 1, pp. 1-11, 2023.

S. Side, N. Syahirah, dan A. M. R. Y. Sap, “A Solusi Numerik Model SIRV Penyebaran Covid-19 dengan Menggunakan Metode Runge-Kutta di Kabupaten Pinrang,” Jurnal Matematika dan Statistika serta Aplikasinya, vol. 11, no. 2, pp. 1-6, 2023.

D. Ludji and F. C. Buan, “Aplication of Order 4 Runge-Kutta Method to Modeling Monkeypox Transmission,” Jurnal Saintek Lahan Kering, vol. 5, no. 2, pp. 24-26, 2023. doi: https://doi.org/https://doi.org/10.32938/slk.v5i2.1981.

I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X. Chu, and H. Chen, “RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method,” Expert Systems with Applications, vol. 181, p.115079, 2021. doi: https://doi.org/10.1016/j.eswa.2021.11507.

F. Latip, A. Dorrah, dan S. Suharsono, “Perbandingan Metode Adams Bashforth-Moulton dan Metode Milne-Simpson dalam Penyelesaian Persamaan Diferensial Euler Orde-8,” in Prosiding Seminar Nasional Metode Kuantitatif, 2017, pp. 278-292.

D. Apriani, W. Wasono, dan M. Huda, “Penerapan Metode Adams-Bashforth-Moulton pada Persamaan Logistik Dalam Memprediksi Pertumbuhan Penduduk di Provinsi Kalimantan Timur,” Eksponensial, vol. 13, no. 2, pp. 95-102, 2022.

M. Imran, M. Cancan, S. Rashid, Y. Ali, dan N. Imran, “Graphical Comparison on Numerical Solutions of Initial Value Problem by Using Euler’s Method, Modified Euler’s Method and Runge-Kutta Method,” International Journal of Research Publication and Reviews, vol. 3, no. 10, p. 1930, 2022.

N. Nurhamidah, F. Mabruroh, J. K. Putri, A. P. Sairi, dan A. N. Latifah, “Perbandingan Metode Euler dan Metode Runge-Kutta Orde 4 Pada Proses Pengisian dan Pengosongan Kapasitor,” Jurnal Inovasi dan Pembelajaran Fisika, vol. 9, no. 2, pp. 185-196, 2022. doi: https://doi.org/10.36706/jipf.v9i2.18531.

S. D. Rahayu, A. Latip, dan W. Nurul, “Analisis Komparatif Metode Jacobian Dan Metode Euler Dalam Kasus Proyeksi Jumlah Penduduk,” JRMST: Jurnal Riset Matematika dan Sains Terapan, vol. 2, no. 1, pp. 29-39, 2022.

M. T. Hossain, M. M. Miah, and M. B, Hossain, “Numerical study of kermack-mckendrik SIR model to predict the outbreak of ebola virus diseases using euler and fourth order runge-kutta methods,” American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), vol. 37, no. 1, pp. 1-21, 2017.

I. P. Sari, N. Nurhamidah, “Penyelesaian Rangkaian Listrik RLC Menggunakan Metode Runge Kutta dan Euler,” OPTIKA: Jurnal Pendidikan Fisika, vol. 6, no. 2, pp. 142-149, 2022. doi: https://doi.org/10.37478/optika.v6i2.1974.




DOI: https://doi.org/10.37905/euler.v11i2.22420

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Resmawan Resmawan, Binti Mualifatul Rosydah, Rizka Putri Handayani

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (Call/SMS/WA)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.